Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(7): 4070-4082, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38294231

RESUMO

BACKGROUND: In wheat-derived bakery products, the quantity of free asparagine (fAsn) has been identified as a key factor in acrylamide (AA) formation. Based on this assumption, four varieties of common wheat (Triticum aestivum L.), Stromboli, Montecarlo, Sothys and Cosmic, selected for their different fAsn content inside the grain, were studied to evaluate their potential in the production of pizza with reduced AA levels. To this purpose, wholemeal and refined flours were obtained from each variety. RESULTS: The fAsn content ranged from 0.25 to 3.30 mmol kg-1, with higher values for wholemeal flours which also showed greater amount of ash, fibre and damaged starch than refined wheat flours. All types of flours were separately used to produce wood oven baked pizza base, according to the Traditional Speciality Guaranteed EU Regulation (97/2010). AA reduction in the range 47-68% was found for all the selected wheat cultivars, compared with a commercial flour, with significantly lower values registered when refined flour was used. Moreover, refined leavened dough samples showed decreased levels of fAsn and reducing sugars due to the fermentation activity of yeasts. Furthermore, it was confirmed that pizza made with wholemeal flours exhibited lower rapidly digestible starch (RDS) and rapidly available glucose (RAG) values compared to that prepared with the refined flour. CONCLUSION: This study clearly shows that a reduced asparagine content in wheat flour is a key factor in the mitigation of AA formation in pizza base. Unfortunately, at the same time, it is highlighted how it is necessary to sacrifice the beneficial effects of fibre intake, such as lowering the glycaemic index, in order to reduce AA. © 2024 Society of Chemical Industry.


Assuntos
Asparagina , Farinha , Asparagina/química , Amido , Triticum/química , Acrilamida/química , Madeira , Pão
2.
Foods ; 12(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37048228

RESUMO

The research objective was to investigate the morpho-rheological, chemical, and structural changes of dough and Neapolitan pizza TSG as the leavening time varies and to evaluate their effects on the digestibility of starch and on the formation of acrylamide during baking. Pizza dough leavening was monitored for 48 h at 22 °C/80% RH, and the analyses were conducted at selected leavening times (0, 4, 8, 16, 24, and 48 h). It was observed that in 30 h the volume tripled and the viscoelastic dough relaxed in the first 4 h, as evidenced by the lower value of the relaxation percentage "a" and the higher rate of decay "b", associated with a high value of the compression work, indicating the presence of a very strong gluten mesh. In the following hours, the dough lost elasticity, and in fact, the G' modulus decreased due to the weakening of the weak interactions between the gluten proteins and the starch. This suggests that a long leavening improved the extensibility of the pizza disc, facilitating the action of the pizza maker. Thermal (TGA and DSC) and morphological (SEM) analyses evidenced the highest water removal rate from the dough, a wider starch gelatinization temperature range, a ∆H of 0.975 ± 0.013 J/g, and a more open and weak gluten structure in dough balls leavened for 16 h. As the leavening time increased, both dough and pizza base samples showed an increase in reducing sugars and free amino groups, while the rapidly digestible starch decreased in the dough following the metabolism of the yeasts and increased in the pizza base due to the starch gelatinization that occurs during baking, which makes it much more susceptible to α-amylase. Finally, the levels of acrylamide remained at the same values despite the higher availability of reducing sugars and its precursors during leavening.

3.
Int J Biol Macromol ; 161: 787-796, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32535208

RESUMO

Lignocellulosic raw materials are being utilised in many industrial sectors as a natural source of interesting biopolymers. In the present research, tomato plant agri-waste, were subjected to an enzymatic treatment (pectinase, hemicellulase, xylanase and laccase) with the aim of recovering polymeric matrices contained therein and obtain a good quality fibre. The cellulose content in the enzyme-treated fibres was enriched of 25% compared to the untreated, and a fair reduction in hemicellulose and lignin was registered. Morphological analyses at SEM demonstrated the cleanliness and fibrillation of fibres. Moreover, the thermal profile, water absorption and pulp viscosity of fibres was strongly affected by the composition changes. The paperboard manufactured from an enzymatically treated sample showed increased stiffness when subjected to tensile testing respect to the control. Therefore, the use of enzyme in fibre pulping has a potential application in the design of sustainable materials.


Assuntos
Glicosídeo Hidrolases/química , Lignina/química , Papel , Solanum lycopersicum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...