Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Oceans ; 121(1): 27-59, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-27818853

RESUMO

Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state-of-the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.

2.
Glob Chang Biol ; 22(6): 2038-53, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26855008

RESUMO

Ocean warming 'hotspots' are regions characterized by above-average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test-beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal-marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high-resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO2 -driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature-defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas.


Assuntos
Mudança Climática , Ecossistema , Água do Mar/química , Temperatura , Movimentos da Água , Adaptação Fisiológica , Austrália , Brasil , Dióxido de Carbono/análise , Índia , Madagáscar , Modelos Teóricos , Oceanos e Mares , África do Sul
3.
Geophys Res Lett ; 42(4): 1205-1213, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26074649

RESUMO

Observational analyses of running 5 year ocean heat content trends (Ht) and net downward top of atmosphere radiation (N) are significantly correlated (r ∼ 0.6) from 1960 to 1999, but a spike in Ht in the early 2000s is likely spurious since it is inconsistent with estimates of N from both satellite observations and climate model simulations. Variations in N between 1960 and 2000 were dominated by volcanic eruptions and are well simulated by the ensemble mean of coupled models from the Fifth Coupled Model Intercomparison Project (CMIP5). We find an observation-based reduction in N of - 0.31 ± 0.21 W m-2 between 1999 and 2005 that potentially contributed to the recent warming slowdown, but the relative roles of external forcing and internal variability remain unclear. While present-day anomalies of N in the CMIP5 ensemble mean and observations agree, this may be due to a cancelation of errors in outgoing longwave and absorbed solar radiation. KEY POINTS: Observed maximum in ocean heat content trend in early 2000s is likely spuriousNet incoming radiation (N) reduced by 0.31 ± 0.21 W m-2 during the warming pausePresent-day estimates of N may contain opposing errors in radiative components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...