Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109477, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38551003

RESUMO

Structural neuroplasticity (changes in the size, strength, number, and targets of synaptic connections) can be modified by sleep and sleep disruption. However, the causal relationships between genetic perturbations, sleep loss, neuroplasticity, and behavior remain unclear. The C. elegans GABAergic DVB neuron undergoes structural plasticity in adult males in response to adolescent stress, which rewires synaptic connections, alters behavior, and is dependent on conserved autism-associated genes NRXN1/nrx-1 and NLGN3/nlg-1. We find that four methods of sleep deprivation transiently induce DVB neurite extension in day 1 adults and increase the time to spicule protraction, which is the functional and behavioral output of the DVB neuron. Loss of nrx-1 and nlg-1 prevent DVB structural plasticity and behavioral changes at day 1 caused by adolescent sleep loss. Therefore, nrx-1 and nlg-1 mediate the morphologic and behavioral consequences of sleep loss, providing insight into the relationship between sleep, neuroplasticity, behavior, and neurologic disease.

2.
bioRxiv ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106124

RESUMO

Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Aggregation induced by circuit activation is also dependent on nrx-1. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.

3.
Transl Psychiatry ; 13(1): 367, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036526

RESUMO

Neurexins are synaptic adhesion molecules that play diverse roles in synaptic development, function, maintenance, and plasticity. Neurexin genes have been associated with changes in human behavior, where variants in NRXN1 are associated with autism, schizophrenia, and Tourette syndrome. While NRXN1, NRXN2, and NRXN3 all encode major α and ß isoforms, NRXN1 uniquely encodes a γ isoform, for which mechanistic roles in behavior have yet to be defined. Here, we show that both α and γ isoforms of neurexin/nrx-1 are required for the C. elegans behavioral response to food deprivation, a sustained period of hyperactivity upon food loss. We find that the γ isoform regulates initiation and the α isoform regulates maintenance of the behavioral response to food deprivation, demonstrating cooperative function of multiple nrx-1 isoforms in regulating a sustained behavior. The γ isoform alters monoamine signaling via octopamine, relies on specific expression of NRX-1 isoforms throughout the relevant circuit, and is independent of neuroligin/nlg-1, the canonical trans-synaptic partner of nrx-1. The α isoform regulates the pre-synaptic structure of the octopamine producing RIC neuron and its maintenance role is conditional on neuroligin/nlg-1. Collectively, these results demonstrate that neurexin isoforms can have separate behavioral roles and act cooperatively across neuronal circuits to modify behavior, highlighting the need to directly analyze and consider all isoforms when defining the contribution of neurexins to behavior.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Octopamina/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
4.
Neurobiol Dis ; 184: 106215, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37385458

RESUMO

RAB3GAP1 is GTPase activating protein localized to the ER and Golgi compartments. In humans, mutations in RAB3GAP1 are the most common cause of Warburg Micro syndrome, a neurodevelopmental disorder associated with intellectual disability, microcephaly, and agenesis of the corpus callosum. We found that downregulation of RAB3GAP1 leads to a reduction in neurite outgrowth and complexity in human stem cell derived neurons. To further define the cellular function of RAB3GAP1, we sought to identify novel interacting proteins. We used a combination of mass spectrometry, co-immunoprecipitation and colocalization analysis and identified two novel interactors of RAB3GAP1: the axon elongation factor Dedicator of cytokinesis 7 (DOCK7) and the TATA modulatory factor 1 (TMF1) a modulator of Endoplasmic Reticulum (ER) to Golgi trafficking. To define the relationship between RAB3GAP1 and its two novel interactors, we analyzed their localization to different subcellular compartments in neuronal and non-neuronal cells with loss of RAB3GAP1. We find that RAB3GAP1 is important for the sub-cellular localization of TMF1 and DOCK7 across different compartments of the Golgi and endoplasmic reticulum. In addition, we find that loss of function mutations in RAB3GAP1 lead to dysregulation of pathways that are activated in response to the cellular stress like ATF6, MAPK, and PI3-AKT signaling. In summary, our findings suggest a novel role for RAB3GAP1 in neurite outgrowth that could encompass the regulation of proteins that control axon elongation, ER-Golgi trafficking, as well as pathways implicated in response to cellular stress.


Assuntos
Deficiência Intelectual , Microcefalia , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Proteínas rab3 de Ligação ao GTP/genética , Proteínas rab3 de Ligação ao GTP/metabolismo , Retículo Endoplasmático/metabolismo , Neurônios/metabolismo , Axônios/metabolismo
5.
Hum Mol Genet ; 32(10): 1634-1646, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36621967

RESUMO

Autism spectrum disorder (ASD) affects 1 in 44 children. Chromatin regulatory proteins are overrepresented among genes that contain high risk variants in ASD. Disruption of the chromatin environment leads to widespread dysregulation of gene expression, which is traditionally thought of as a mechanism of disease pathogenesis associated with ASD. Alternatively, alterations in chromatin dynamics could also lead to dysregulation of alternative splicing, which is understudied as a mechanism of ASD pathogenesis. The anticonvulsant valproic acid (VPA) is a well-known environmental risk factor for ASD that acts as a class I histone deacetylase inhibitor. However, the precise molecular mechanisms underlying defects in human neuronal development associated with exposure to VPA are understudied. To dissect how VPA exposure and subsequent chromatin hyperacetylation influence molecular signatures involved in ASD pathogenesis, we conducted RNA sequencing (RNA-seq) in human cortical neurons that were treated with VPA. We observed that differentially expressed genes (DEGs) were enriched for mRNA splicing, mRNA processing, histone modification and metabolism related gene sets. Furthermore, we observed widespread increases in the number and the type of alternative splicing events. Analysis of differential transcript usage (DTU) showed that exposure to VPA induces extensive alterations in transcript isoform usage across neurodevelopmentally important genes. Finally, we find that DEGs and genes that display DTU overlap with known ASD-risk genes. Altogether, these findings suggest that, in addition to differential gene expression, changes in alternative splicing correlated with alterations in the chromatin environment could act as an additional mechanism of disease in ASD.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Criança , Humanos , Animais , Feminino , Transtorno do Espectro Autista/etiologia , Cromatina/genética , Processamento Alternativo/genética , Ácido Valproico/efeitos adversos , RNA Mensageiro/metabolismo , Modelos Animais de Doenças
6.
Mol Psychiatry ; 27(4): 2291-2303, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35210569

RESUMO

Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identified as a major risk factor for ASD. ASH1L methylates Histone H3 on Lysine 36, which is proposed to result primarily in transcriptional activation. However, how mutations in ASH1L lead to deficits in neuronal connectivity associated with ASD pathogenesis is not known. We report that ASH1L regulates neuronal morphogenesis by counteracting the catalytic activity of Polycomb Repressive complex 2 group (PRC2) in stem cell-derived human neurons. Depletion of ASH1L decreases neurite outgrowth and decreases expression of the gene encoding the neurotrophin receptor TrkB whose signaling pathway is linked to neuronal morphogenesis. The neuronal morphogenesis defect is overcome by inhibition of PRC2 activity, indicating that a balance between the Trithorax group protein ASH1L and PRC2 activity determines neuronal morphology. Thus, our work suggests that ASH1L may epigenetically regulate neuronal morphogenesis by modulating pathways like the BDNF-TrkB signaling pathway. Defects in neuronal morphogenesis could potentially impair the establishment of neuronal connections which could contribute to the neurodevelopmental pathogenesis associated with ASD in patients with ASH1L mutations.


Assuntos
Proteínas de Ligação a DNA , Histona-Lisina N-Metiltransferase , Proteínas de Ligação a DNA/genética , Epigênese Genética/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Neurônios/metabolismo
7.
Sci Transl Med ; 13(580)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568516

RESUMO

Christianson syndrome (CS), an X-linked neurological disorder characterized by postnatal attenuation of brain growth (postnatal microcephaly), is caused by mutations in SLC9A6, the gene encoding endosomal Na+/H+ exchanger 6 (NHE6). To hasten treatment development, we established induced pluripotent stem cell (iPSC) lines from patients with CS representing a mutational spectrum, as well as biologically related and isogenic control lines. We demonstrated that pathogenic mutations lead to loss of protein function by a variety of mechanisms: The majority of mutations caused loss of mRNA due to nonsense-mediated mRNA decay; however, a recurrent, missense mutation (the G383D mutation) had both loss-of-function and dominant-negative activities. Regardless of mutation, all patient-derived neurons demonstrated reduced neurite growth and arborization, likely underlying diminished postnatal brain growth in patients. Phenotype rescue strategies showed mutation-specific responses: A gene transfer strategy was effective in nonsense mutations, but not in the G383D mutation, wherein residual protein appeared to interfere with rescue. In contrast, application of exogenous trophic factors (BDNF or IGF-1) rescued arborization phenotypes across all mutations. These results may guide treatment development in CS, including gene therapy strategies wherein our data suggest that response to treatment may be dictated by the class of mutation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Microcefalia , Ataxia , Epilepsia , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Deficiência Intelectual , Microcefalia/genética , Mutação/genética , Neurônios , Transtornos da Motilidade Ocular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...