Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 33: 106413, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33134444

RESUMO

Fipronil is a phenylpyrazole pesticide that is used in both residential and agricultural applications. Fipronil is detected in run-off and water systems that are near areas in which the pesticide has been applied. The pesticide acts to antagonize gamma aminobutyric acid receptors, leading to over-excitation in the central nervous system. Fipronil has relatively high toxicity to fish, but the mechanisms underlying the toxicity are not well understood in embryonic stages. Zebrafish embryos were exposed to a single concentration of fipronil for 48 h at ∼3-4 h-post-fertilization. Following a 7-day depuration phase, transcriptome and behavioral analyses were conducted. Transcriptomics identified neural processes as those differentially expressed with different doses of fipronil (0.2 µg, 200 µg and 2 mg fipronil/L). Gene networks associated with astrocyte differentiation, myelination, neural tube development, brain stem response, innervation, nerve regeneration, astrocyte differentiation, among other pathways were altered with exposure. In addition, miRNA-related events are disrupted by fipronil exposure and genes associated with primary or pri-miRNA processing were increased in larval fish exposed to the pesticide. These data present putative mechanisms associated with neurological impacts at later ages of zebrafish. This is important because it is not clear how early exposure to pesticides like fipronil affect central nervous system function and organisms later in life.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32977147

RESUMO

Pesticides are typically applied to crops as acute applications, and residual effects of such intermittent exposures are not often characterized in developing fish. Fipronil is an agricultural pesticide that inhibits γ-amino-butyric acid (GABA) gated chloride channels. In this study, zebrafish (Danio rerio) embryos were exposed for 48 h (starting at ~3 h post fertilization, hpf) to various concentrations of fipronil (0.02 µg/L up to 4000 µg/L). Following this acute exposure, a subset of fish was transferred to clean water for a 7-day depuration phase. We hypothesized that a pulse exposure to fipronil during critical periods of central nervous system development would adversely affect fish later in life. After a 48 hour pulse exposure, survival was reduced in embryos exposed to 2 µg fipronil/L or greater. However, there was no further mortality during the depuration phase, nor were there changes in body length nor notochord length in larvae 9 dpf (days post-fertilization) compared to controls. Additional experiments were carried out at higher concentrations over 96 h (up to 4 dpf) to also elucidate developmental effects and teratogenicity of fipronil (43.7 µg/L up to 4370 µg/L). Fipronil at these higher concentrations significantly impacted the development of zebrafish, and the following morphometric and teratogenic effects were observed in 4 dpf fish; reduced body length, yolk sac and pericardial edema, reduced midbrain length, reduced optic and otic diameter, and truncation of the lower jaw. In depurated fish, we hypothesized that there would exist residual effects of exposure at the molecular level. Transcriptome profiling was therefore conducted on 9 dpf depurated larvae exposed initially for 48 h to one dose of either 0.2 µg/L, 200 µg/L or 2000 µg/L fipronil. The expression of gene networks associated with glycogen and omega-3-fatty acid metabolism were decreased in larvae exposed to each of the three concentrations of fipronil, suggesting metabolic disruption. Moreover, transcriptomics revealed that fipronil suppressed gene networks related to light-dark adaptation, photoperiod sensing, and circadian rhythm. Based on these data, we tested fish for altered behavioral responses in a Light-Dark preference test. Larvae exposed to >200 µg fipronil/L as embryos showed fewer number of visits (20-30% less) to the dark zone compared to controls. Larvae also spent a lower amount of time in the dark zone compared to controls, suggesting that fipronil strengthened dark avoidance behavior which is indicative of anxiety. This study demonstrates that a short pulse exposure to fipronil can affect transcriptome networks for metabolism, circadian rhythm, and response to light in fish after depuration, and these molecular responses are hypothesized to be related to aberrant behavioral effects observed in the light-dark preference test.


Assuntos
Comportamento Animal/efeitos dos fármacos , Embrião não Mamífero/patologia , Inseticidas/toxicidade , Larva/metabolismo , Pirazóis/toxicidade , Peixe-Zebra/genética , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Testes de Toxicidade , Transcriptoma , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
J Biol Chem ; 295(46): 15597-15621, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32878988

RESUMO

Branched-chain α-keto acids (BCKAs) are catabolites of branched-chain amino acids (BCAAs). Intracellular BCKAs are cleared by branched-chain ketoacid dehydrogenase (BCKDH), which is sensitive to inhibitory phosphorylation by BCKD kinase (BCKDK). Accumulation of BCKAs is an indicator of defective BCAA catabolism and has been correlated with glucose intolerance and cardiac dysfunction. However, it is unclear whether BCKAs directly alter insulin signaling and function in the skeletal and cardiac muscle cell. Furthermore, the role of excess fatty acids (FAs) in perturbing BCAA catabolism and BCKA availability merits investigation. By using immunoblotting and ultra-performance liquid chromatography MS/MS to analyze the hearts of fasted mice, we observed decreased BCAA-catabolizing enzyme expression and increased circulating BCKAs, but not BCAAs. In mice subjected to diet-induced obesity (DIO), we observed similar increases in circulating BCKAs with concomitant changes in BCAA-catabolizing enzyme expression only in the skeletal muscle. Effects of DIO were recapitulated by simulating lipotoxicity in skeletal muscle cells treated with saturated FA, palmitate. Exposure of muscle cells to high concentrations of BCKAs resulted in inhibition of insulin-induced AKT phosphorylation, decreased glucose uptake, and mitochondrial oxygen consumption. Altering intracellular clearance of BCKAs by genetic modulation of BCKDK and BCKDHA expression showed similar effects on AKT phosphorylation. BCKAs increased protein translation and mTORC1 activation. Pretreating cells with mTORC1 inhibitor rapamycin restored BCKA's effect on insulin-induced AKT phosphorylation. This study provides evidence for FA-mediated regulation of BCAA-catabolizing enzymes and BCKA content and highlights the biological role of BCKAs in regulating muscle insulin signaling and function.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/antagonistas & inibidores , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/sangue , Animais , Linhagem Celular , Dieta Hiperlipídica , Regulação para Baixo/efeitos dos fármacos , Insulina/farmacologia , Cetoácidos/sangue , Cetoácidos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Miocárdio/metabolismo , Palmitatos/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Data Brief ; 25: 104351, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31453304

RESUMO

Dieldrin is an environmental contaminant that adversely affects aquatic organisms. The data presented in this study are proteomic data collected in liver of zebrafish that were exposed to the pesticide in a dietary exposure. For label free proteomics, data were collected with a quadrupole Time-of-Flight mass spectrometer and for iTRAQ proteomics, data were acquired using a hybrid quadrupole Orbitrap (Q Exactive) MS system. Using formic acid digestion and label free proteomics, 2,061 proteins were identified, and among those, 103 were differentially abundant (p < 0.05 in at least one dose). In addition, iTRAQ proteomics identified 722 proteins in the liver of zebrafish following dieldrin treatment. The label-free approach identified 21 proteins that followed a dose dependent response. Of the differentially abundant proteins identified by iTRAQ, there were 26 unique expression patterns for proteins based on the three doses of dieldrin. Proteins were queried for disease networks to learn more about adverse effects in the liver following dieldrin exposure. Differentially abundant proteins were related to metabolic disease, steatohepatitis and lipid metabolism disorders, drug-induced liver injury, neoplasms, tissue degeneration and liver metastasis. The proteomics data described here is associated with a research article, "Label-free and iTRAQ proteomics analysis in the liver of zebrafish (Danio rerio) following a dietary exposure to the organochlorine pesticide dieldrin" (Simmons et al. 2019). This investigation reveals new biomarkers of toxicity and will be of interest to those studying aquatic toxicology and pesticides.

5.
J Proteomics ; 202: 103362, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31022476

RESUMO

The organochlorine dieldrin (DLD) bioaccumulates in lipid-rich tissues and is associated with immunosuppression, altered metabolism, and cancer. The objective of this study was to determine the effect of DLD on the hepatic proteome in zebrafish following dietary treatment as the liver is central to metabolism. Females were fed a control dose or one of three doses of DLD-contaminated food pellets over 21 days. Both label-free and iTRAQ proteomics were conducted as two complementary methods to expand coverage of the proteome. Label-free proteomics quantified 1563 proteins: 6 proteins showed a linear dose-response with DLD. iTRAQ quantified >3500 proteins; 5 proteins were decreased and 34 proteins were increased in abundance within the liver with all three doses. Overall, DLD reduced the abundance of proteins associated with glucose and cholesterol metabolism, lipid oxidation, liver function, and immune-related processes. Few proteins were identified by both methods as being altered (~1%), suggesting that each method detected different subsets of proteins. Protein responses in the liver were largely dependent on dose, however proteins related to liver and organ function, centrosome separation, glucose/energy metabolism, and immune-related pathways were confirmed by each independent technique and were suppressed with DLD exposure. This study identifies proteomic responses that are associated with organochlorine-induced hepatotoxicity. BIOLOGICAL SIGNIFICANCE: Environmental contaminants cause hepatotoxicity because the liver is the major organ for detoxification. The legacy pesticide dieldrin significantly bioaccumulates in tissues, and can affect molecular processes that can lead to liver pathology. LC MS/MS proteomics identified protein networks related to tumors, energy homeostasis, and chromosomal separation as those affected by dietary exposure to dieldrin. We applied two orthogonal mass spectrometry-based methods to more completely survey the liver proteome, strengthening data interpretation. These data improve understanding as to the effects of organochlorine pesticide toxicity in the liver and the study identifies proteome networks that can contribute to adverse outcome pathways for pesticide exposure.


Assuntos
Dieldrin/toxicidade , Fígado/metabolismo , Praguicidas/toxicidade , Proteômica , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Exposição Dietética
6.
J Lipid Res ; 59(10): 1805-1817, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30072447

RESUMO

Autotaxin (ATX) is an adipokine that generates the bioactive lipid, lysophosphatidic acid (LPA). ATX-LPA signaling has been implicated in diet-induced obesity and systemic insulin resistance. However, it remains unclear whether the ATX-LPA pathway influences insulin function and energy metabolism in target tissues, particularly skeletal muscle, the major site of insulin-stimulated glucose disposal. The objective of this study was to test whether the ATX-LPA pathway impacts tissue insulin signaling and mitochondrial metabolism in skeletal muscle during obesity. Male mice with heterozygous ATX deficiency (ATX+/-) were protected from obesity, systemic insulin resistance, and cardiomyocyte dysfunction following high-fat high-sucrose (HFHS) feeding. HFHS-fed ATX+/- mice also had improved insulin-stimulated AKT phosphorylation in white adipose tissue, liver, heart, and skeletal muscle. Preserved insulin-stimulated glucose transport in muscle from HFHS-fed ATX+/- mice was associated with improved mitochondrial pyruvate oxidation in the absence of changes in fat oxidation and ectopic lipid accumulation. Similarly, incubation with LPA decreased insulin-stimulated AKT phosphorylation and mitochondrial energy metabolism in C2C12 myotubes at baseline and following palmitate-induced insulin resistance. Taken together, our results suggest that the ATX-LPA pathway contributes to obesity-induced insulin resistance in metabolically relevant tissues. Our data also suggest that LPA directly impairs skeletal muscle insulin signaling and mitochondrial function.


Assuntos
Resistência à Insulina , Lisofosfolipídeos/metabolismo , Mitocôndrias/patologia , Obesidade/metabolismo , Obesidade/patologia , Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Animais , Glucose/metabolismo , Homeostase , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Especificidade de Órgãos
7.
Data Brief ; 11: 628-633, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28367483

RESUMO

Quantitative proteins analysis was carried out in the hypothalamus of zebrafish following dietary exposure to the legacy pesticide dieldrin. Data were collected using iTRAQ labeling methodology and data were acquired using a hybrid quadrupole Orbitrap (Q Exactive) MS system (Thermo Fisher Scientific, Bremen, Germany). There were 3941 proteins identified in the hypothalamus of zebrafish, and these proteins comprised 23 unique expression patterns for proteins based on the three doses of dieldrin. There were 226 proteins that were regulated in one or more doses of dieldrin and 3715 proteins that were not affected. Thus, 5.7% of the proteins detected responded to the treatment. Many proteins that were differentially expressed were those found in, or associated with, the mitochondria. The proteomics data described in this article is associated with a research article, "Transcriptomic and proteomic analysis implicates the immune system and mitochondria as molecular targets of dieldrin in the zebrafish (Danio rerio) central nervous system" (A.M. Cowie, K.I. Sarty, A. Mercer, J. Koh, K.A. Kidd, C.J. Martyniuk, submitted) [1], and serves as a resource for researchers working in the field of pesticide exposures and protein biomarkers.

8.
J Proteomics ; 157: 71-82, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28192238

RESUMO

The objectives of this study were to determine the behavioral and molecular responses in the adult zebrafish (Danio rerio) central nervous system (CNS) following a dietary exposure to the pesticide dieldrin. Zebrafish were fed pellets spiked with 0.03, 0.15, or 1.8µg/g dieldrin for 21days. Behavioral analysis revealed no difference in exploratory behaviors or those related to anxiety. Transcriptional networks for T-cell aggregation and selection were decreased in expression suggesting an immunosuppressive effect of dieldrin, consistent with other studies investigating organochlorine pesticides. Processes related to oxidative phosphorylation were also differentially affected by dieldrin. Quantitative proteomics (iTRAQ) using a hybrid quadrupole-Orbitrap identified 226 proteins that were different following one or more doses. These proteins included ATP synthase subunits (mitochondrial) and hypoxia up-regulated protein 1 which were decreased and NADH dehydrogenases (mitochondrial) and signal recognition particle 9 which were up-regulated. Thus, proteins affected were functionally associated with the mitochondria and a protein network analysis implicated Parkinson's disease (PD) and Huntington's disease as diseases associated with altered proteins. Molecular networks related to mitochondrial dysfunction and T-cell regulation are hypothesized to underlie the association between dieldrin and PD. These data contribute to a comprehensive transcriptomic and proteomic biomarker framework for pesticide exposures and neurodegenerative diseases. BIOLOGICAL SIGNIFICANCE: Dieldrin is a persistent organochlorine pesticide that has been associated with human neurodegenerative disease such as Parkinson's disease. Dieldrin is ranked 18th on the 2015 U.S. Agency for Toxic Substances and Disease Registry and continues to be a pesticide of concern for human health. Transcriptomics and quantitative proteomics (ITRAQ) were employed to characterize the molecular networks in the central nervous system that are altered with dietary exposure to dieldrin. We found that transcriptional and protein networks related to the immune system, mitochondria, and Parkinson's disease were preferentially affected by dieldrin. The study provides new insight into the mechanisms of dieldrin neurotoxicity that may explain, in part, the association between this pesticide and increased risks to neurodegeneration. These data contribute in a significant way to developing a molecular framework for pesticide induced neurotoxicity.


Assuntos
Sistema Nervoso Central , Dieldrin/toxicidade , Mitocôndrias , Proteínas Mitocondriais , Praguicidas/toxicidade , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/imunologia , Proteínas Mitocondriais/metabolismo , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/imunologia , Síndromes Neurotóxicas/imunologia , Síndromes Neurotóxicas/metabolismo , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/imunologia , Doença de Parkinson Secundária/metabolismo , Peixe-Zebra/imunologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-27939725

RESUMO

Methylmercury (MeHg) exposure and adverse health effects in fishes have been documented, but the molecular mechanisms involved in toxicity have not been fully characterized. The objectives of the current study were to (1) determine whether total Hg (THg) in the muscle was predictive of MeHg concentrations in the brain of wild female yellow perch (Perca flavescens) collected from four lakes in Kejimkujik National Park, a known biological mercury (Hg) hotspot in Nova Scotia, Canada and (2) to determine whether transcripts involved in the oxidative stress response were altered in abundance in fish collected across five lakes representing a MeHg gradient. In female yellow perch, MeHg in whole brain (0.38 to 2.00µg/g wet weight) was positively associated with THg in muscle (0.18 to 2.13µg/g wet weight) (R2=0.61, p<0.01), suggesting that muscle THg may be useful for predicting MeHg concentrations in the brain. Catalase (cat) mRNA levels were significantly lower in brains of perch collected from lakes with high Hg when compared to those individuals from lakes with relatively lower Hg (p=0.02). Other transcripts (cytochrome c oxidase, glutathione peroxidase, glutathione-s-transferase, heat shock protein 70, protein disulfide isomerase, and superoxide dismutase) did not show differential expression in the brain over the gradient. These findings suggest that MeHg may be inversely associated with catalase mRNA abundance in the central nervous system of wild fishes.


Assuntos
Encéfalo/efeitos dos fármacos , Catalase/genética , Proteínas de Peixes/genética , Compostos de Metilmercúrio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Percas/genética , RNA Mensageiro/genética , Poluentes Químicos da Água/toxicidade , Animais , Carga Corporal (Radioterapia) , Encéfalo/metabolismo , Catalase/metabolismo , Regulação para Baixo , Monitoramento Ambiental/métodos , Feminino , Proteínas de Peixes/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Compostos de Metilmercúrio/metabolismo , Músculo Esquelético/metabolismo , Nova Escócia , Estresse Oxidativo/genética , Percas/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Poluentes Químicos da Água/metabolismo
10.
Aquat Toxicol ; 182: 11-19, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27842271

RESUMO

Naphthenic acid fraction components (NAFCs) are constituents of oil sands process-affected water (OSPW), which is generated as a result of unconventional oil production via surface mining in the Athabasca oil sands region. NAFCs are often considered to be major drivers of OSPW toxicity to various taxa, including fishes. However, the molecular targets of these complex mixtures are not fully elucidated. Here we examined the effects in walleye (Sander vitreus) embryos after exposure to NAFCs extracted from fresh OSPW. Eleutheroembryos (exposed to 0, 4.2 or 8.3mg/L NAFCs from 1day post-fertilization to hatch) were subsampled, measured for growth and deformities, and molecular responses were assessed via real-time polymerase chain reaction (PCR). Fourteen genes were evaluated, with a focus on the aryl-hydrocarbon receptor (AhR) - cytochrome P450 pathway (arnt, cyp1a1), the oxidative stress axis (cat, gst, sod, gpx1b), apoptosis (e.g. casp3, bax and p53), growth factor signaling (e.g. insulin-like growth factors igf1, igf1b, and igf1bp), and tissue differentiation (vim). NAFC exposure was associated with an increase in the expression of cyp1a1, and a decrease in gpx1b and ribosomal protein rps40. These results indicate that NAFC effects on walleye early-life stages may be mediated through oxidative stress via pathways that include AhR.


Assuntos
Ácidos Carboxílicos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Campos de Petróleo e Gás/química , Percas/fisiologia , Animais , Ácidos Carboxílicos/química , Citocromo P-450 CYP1A1/genética , Proteínas de Peixes/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Oxirredutases/genética , Reação em Cadeia da Polimerase em Tempo Real , Poluentes Químicos da Água/toxicidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-25956319

RESUMO

Fundamental studies characterizing transcript variability in teleost tissues are needed if molecular endpoints are to be useful for regulatory ecotoxicology. The objectives of this study were to (1) measure transcript variability of steroidogenic enzymes and steroid receptors in the fathead minnow (FHM; Pimephales promelas) ovary to better determine normal variability and the sample sizes needed to detect specific effect sizes and to (2) determine how expression patterns related to higher level endpoints used in some regulatory ecotoxicology programs (e.g. relative gonad size). Estrogen receptor 2b (esr2b) and 5α-reductase a3 (srd5a3) showed high variability in the ovary (CV>1.0) while progesterone receptor (pgr), androgen receptor (ar), and esr2a showed comparatively low variability (CV=~0.5--0.7). Using these estimates, a power analysis revealed that sample sizes for real-time PCR experiments would need to be>20 to detect a 2-fold change for 7 of the transcripts examined; thus many molecular studies conducted in the fish ovary may have insufficient power to detect smaller effects. Two transcripts were correlated to steroid production in the ovary; cyp19a1 levels were positively correlated to in vitro E2 production, while ar levels were negatively correlated to in vitro T production. Thus, these transcripts may be informative molecular surrogates for ovarian steroid production. No transcript investigated showed any correlation to GSI, condition, or body weight/length. Molecular approaches in fish are increasingly used to assess biological impacts of chemical stressors; however additional studies are required that determine how molecular variability relates to higher level biological endpoints.


Assuntos
Cyprinidae/genética , Ecotoxicologia , Perfilação da Expressão Gênica , Ovário/metabolismo , Animais , Cyprinidae/crescimento & desenvolvimento , Cyprinidae/metabolismo , Cyprinidae/fisiologia , Determinação de Ponto Final , Monitoramento Ambiental , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Modelos Estatísticos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/genética , Ovário/citologia , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução/efeitos dos fármacos , Tamanho da Amostra , Esteroides/biossíntese
12.
Artigo em Inglês | MEDLINE | ID: mdl-24013142

RESUMO

The herbicide linuron (LIN) is an endocrine disruptor with an anti-androgenic mode of action. The objectives of this study were to (1) improve knowledge of androgen and anti-androgen signaling in the teleostean ovary and to (2) assess the ability of gene networks and machine learning to classify LIN as an anti-androgen using transcriptomic data. Ovarian explants from vitellogenic fathead minnows (FHMs) were exposed to three concentrations of either 5α-dihydrotestosterone (DHT), flutamide (FLUT), or LIN for 12h. Ovaries exposed to DHT showed a significant increase in 17ß-estradiol (E2) production while FLUT and LIN had no effect on E2. To improve understanding of androgen receptor signaling in the ovary, a reciprocal gene expression network was constructed for DHT and FLUT using pathway analysis and these data suggested that steroid metabolism, translation, and DNA replication are processes regulated through AR signaling in the ovary. Sub-network enrichment analysis revealed that FLUT and LIN shared more regulated gene networks in common compared to DHT. Using transcriptomic datasets from different fish species, machine learning algorithms classified LIN successfully with other anti-androgens. This study advances knowledge regarding molecular signaling cascades in the ovary that are responsive to androgens and anti-androgens and provides proof of concept that gene network analysis and machine learning can classify priority chemicals using experimental transcriptomic data collected from different fish species.


Assuntos
Antagonistas de Androgênios/farmacologia , Disruptores Endócrinos/farmacologia , Redes Reguladoras de Genes/efeitos dos fármacos , Linurona/farmacologia , Receptores Androgênicos/efeitos dos fármacos , Poluentes Químicos da Água/farmacologia , Animais , Inteligência Artificial , Cyprinidae , Di-Hidrotestosterona/farmacologia , Estradiol/biossíntese , Feminino , Flutamida/farmacologia , Perfilação da Expressão Gênica , Ovário/efeitos dos fármacos , Transdução de Sinais , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...