Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(10): 3707-3713, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33684290

RESUMO

The central role of cupric superoxide intermediates proposed in hormone and neurotransmitter biosynthesis by noncoupled binuclear copper monooxygenases like dopamine-ß-monooxygenase has drawn significant attention to the unusual methionine ligation of the CuM ("CuB") active site characteristic of this class of enzymes. The copper-sulfur interaction has proven critical for turnover, raising still-unresolved questions concerning Nature's selection of an oxidizable Met residue to facilitate C-H oxygenation. We describe herein a model for CuM, [(TMGN3S)CuI]+ ([1]+), and its O2-bound analog [(TMGN3S)CuII(O2•-)]+ ([1·O2]+). The latter is the first reported cupric superoxide with an experimentally proven Cu-S bond which also possesses demonstrated hydrogen atom abstraction (HAA) reactivity. Introduction of O2 to a precooled solution of the cuprous precursor [1]B(C6F5)4 (-135 °C, 2-methyltetrahydrofuran (2-MeTHF)) reversibly forms [1·O2]B(C6F5)4 (UV/vis spectroscopy: λmax 442, 642, 742 nm). Resonance Raman studies (413 nm) using 16O2 [18O2] corroborated the identity of [1·O2]+ by revealing Cu-O (446 [425] cm-1) and O-O (1105 [1042] cm-1) stretches, and extended X-ray absorption fine structure (EXAFS) spectroscopy showed a Cu-S interatomic distance of 2.55 Å. HAA reactivity between [1·O2]+ and TEMPO-H proceeds rapidly (1.28 × 10-1 M-1 s-1, -135 °C, 2-MeTHF) with a primary kinetic isotope effect of kH/kD = 5.4. Comparisons of the O2-binding behavior and redox activity of [1]+ vs [2]+, the latter a close analog of [1]+ but with all N atom ligation (i.e., N3S vs N4), are presented.


Assuntos
Cobre/química , Hidrogênio/química , Sulfetos/química , Superóxidos/química , Teoria da Densidade Funcional , Cinética , Conformação Molecular , Oxirredução , Espectrofotometria Ultravioleta
2.
Inorg Chem ; 59(22): 16567-16581, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33136386

RESUMO

Cu(I) active sites in metalloproteins are involved in O2 activation, but their O2 reactivity is difficult to study due to the Cu(I) d10 closed shell which precludes the use of conventional spectroscopic methods. Kß X-ray emission spectroscopy (XES) is a promising technique for investigating Cu(I) sites as it detects photons emitted by electronic transitions from occupied orbitals. Here, we demonstrate the utility of Kß XES in probing Cu(I) sites in model complexes and a metalloprotein. Using Cu(I)Cl, emission features from double-ionization (DI) states are identified using varying incident X-ray photon energies, and a reasonable method to correct the data to remove DI contributions is presented. Kß XES spectra of Cu(I) model complexes, having biologically relevant N/S ligands and different coordination numbers, are compared and analyzed, with the aid of density functional theory (DFT) calculations, to evaluate the sensitivity of the spectral features to the ligand environment. While the low-energy Kß2,5 emission feature reflects the ionization energy of ligand np valence orbitals, the high-energy Kß2,5 emission feature corresponds to transitions from molecular orbitals (MOs) having mainly Cu 3d character with the intensities determined by ligand-mediated d-p mixing. A Kß XES spectrum of the Cu(I) site in preprocessed galactose oxidase (GOpre) supports the 1Tyr/2His structural model that was determined by our previous X-ray absorption spectroscopy and DFT study. The high-energy Kß2,5 emission feature in the Cu(I)-GOpre data has information about the MO containing mostly Cu 3dx2-y2 character that is the frontier molecular orbital (FMO) for O2 activation, which shows the potential of Kß XES in probing the Cu(I) FMO associated with small-molecule activation in metalloproteins.


Assuntos
Cobre/metabolismo , Galactose Oxidase/metabolismo , Cobre/química , Teoria da Densidade Funcional , Galactose Oxidase/química , Oxigênio/química , Oxigênio/metabolismo , Espectrometria por Raios X
3.
J Am Chem Soc ; 140(29): 9042-9045, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29957998

RESUMO

[(L)CuII(O2•-)]+ (i.e., cupric-superoxo) complexes, as the first and/or key reactive intermediates in (bio)chemical Cu-oxidative processes, including in the monooxygenases PHM and DßM, have been systematically stabilized by intramolecular hydrogen bonding within a TMPA ligand-based framework. Also, gradual strengthening of ligand-derived H-bonding dramatically enhances the [(L)CuII(O2•-)]+ reactivity toward hydrogen-atom abstraction (HAA) of phenolic O-H bonds. Spectroscopic properties of the superoxo complexes and their azido analogues, [(L)CuII(N3-)]+, also systematically change as a function of ligand H-bonding capability.


Assuntos
Complexos de Coordenação/química , Cobre/química , Superóxidos/química , Azidas/química , Complexos de Coordenação/síntese química , Ligação de Hidrogênio , Ligantes , Estrutura Molecular , Oxirredução
4.
Inorg Chem ; 57(10): 5959-5972, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29741884

RESUMO

Diazoalkanes are interesting redox-active ligands and also precursors to carbene fragments. We describe a systematic study of the binding and electronic structure of diphenyldiazomethane complexes of ß-diketiminate supported iron and cobalt, which span a range of formal d-electron counts of 7-9. In end-on diazoalkane complexes of formally monovalent three-coordinate transition metals, the electronic structures are best described as having the metal in the +2 oxidation state with an antiferromagnetically coupled radical anion diazoalkane as shown by crystallography, spectroscopy, and computations. A formally zerovalent cobalt complex has different structures depending on whether potassium binds; potassium binding gives transfer of two electrons into the η2-diazoalkane, but the removal of the potassium with crown ether leads to a form with only one electron transferred into an η1-diazoalkane. These results demonstrate the influence of potassium binding and metal oxidation state on the charge localization in the diazoalkane complexes. Interestingly, none of these reduced complexes yield carbene fragments, but the new cobalt(II) complex LtBuCoPF6 (LtBu = bulky ß-diketiminate) does catalyze the formation of an azine from its cognate diazoalkane, suggesting N2 loss and transient carbene formation.

5.
J Am Chem Soc ; 139(8): 3186-3195, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28195739

RESUMO

Copper-dependent metalloenzymes are widespread throughout metabolic pathways, coupling the reduction of O2 with the oxidation of organic substrates. Small-molecule synthetic analogs are useful platforms to generate L/Cu/O2 species that reproduce the structural, spectroscopic, and reactive properties of some copper-/O2-dependent enzymes. Landmark studies have shown that the conversion between dicopper(II)-peroxo species (L2CuII2(O22-) either side-on peroxo, SP, or end-on trans-peroxo, TP) and dicopper(III)-bis(µ-oxo) (L2CuIII2(O2-)2: O) can be controlled through ligand design, reaction conditions (temperature, solvent, and counteranion), or substrate coordination. We recently published ( J. Am. Chem. Soc. 2012 , 134 , 8513 , DOI: 10.1021/ja300674m ) the crystal structure of an unusual SP species [(MeAN)2CuII2(O22-)]2+ (SPMeAN, MeAN: N-methyl-N,N-bis[3-(dimethylamino)propyl]amine) that featured an elongated O-O bond but did not lead to O-O cleavage or reactivity toward external substrates. Herein, we report that SPMeAN can be activated to generate OMeAN and perform the oxidation of external substrates by two complementary strategies: (i) coordination of substituted sodium phenolates to form the substrate-bound OMeAN-RPhO- species that leads to ortho-hydroxylation in a tyrosinase-like fashion and (ii) addition of stoichiometric amounts (1 or 2 equiv) of Lewis acids (LA's) to form an unprecedented series of O-type species (OMeAN-LA) able to oxidize C-H and O-H bonds. Spectroscopic, computational, and mechanistic studies emphasize the unique plasticity of the SPMeAN core, which combines the assembly of exogenous reagents in the primary (phenolates) and secondary (Lewis acids association to the MeAN ligand) coordination spheres with O-O cleavage. These findings are reminiscent of the strategy followed by several metalloproteins and highlight the possible implication of O-type species in copper-/dioxygen-dependent enzymes such as tyrosinase (Ty) and particulate methane monooxygenase (pMMO).


Assuntos
Cobre/química , Ácidos de Lewis/química , Oxigênio/química , Fenóis/química , Estrutura Molecular , Oxirredução , Teoria Quântica
6.
Proc Natl Acad Sci U S A ; 113(43): 12035-12040, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27790986

RESUMO

Peptidylglycine α-hydroxylating monooxygenase (PHM) and dopamine ß-monooxygenase (DßM) are copper-dependent enzymes that are vital for neurotransmitter regulation and hormone biosynthesis. These enzymes feature a unique active site consisting of two spatially separated (by 11 Å in PHM) and magnetically noncoupled copper centers that enables 1e- activation of O2 for hydrogen atom abstraction (HAA) of substrate C-H bonds and subsequent hydroxylation. Although the structures of the resting enzymes are known, details of the hydroxylation mechanism and timing of long-range electron transfer (ET) are not clear. This study presents density-functional calculations of the full reaction coordinate, which demonstrate: (i) the importance of the end-on coordination of superoxide to Cu for HAA along the triplet spin surface; (ii) substrate radical rebound to a CuII hydroperoxide favors the proximal, nonprotonated oxygen; and (iii) long-range ET can only occur at a late step with a large driving force, which serves to inhibit deleterious Fenton chemistry. The large inner-sphere reorganization energy at the ET site is used as a control mechanism to arrest premature ET and dictate the correct timing of ET.


Assuntos
Cobre/química , Dopamina beta-Hidroxilase/química , Hidrogênio/química , Oxigenases de Função Mista/química , Complexos Multienzimáticos/química , Oxigênio/química , Superóxidos/química , Animais , Sítios de Ligação , Domínio Catalítico , Humanos , Hidroxilação , Cinética , Camundongos , Oxirredução , Ligação Proteica , Estrutura Secundária de Proteína , Teoria Quântica , Ratos , Termodinâmica
7.
J Am Chem Soc ; 138(40): 13219-13229, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27626829

RESUMO

Galactose oxidase (GO) is a copper-dependent enzyme that accomplishes 2e- substrate oxidation by pairing a single copper with an unusual cysteinylated tyrosine (Cys-Tyr) redox cofactor. Previous studies have demonstrated that the post-translational biogenesis of Cys-Tyr is copper- and O2-dependent, resulting in a self-processing enzyme system. To investigate the mechanism of cofactor biogenesis in GO, the active-site structure of Cu(I)-loaded GO was determined using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy, and density-functional theory (DFT) calculations were performed on this model. Our results show that the active-site tyrosine lowers the Cu potential to enable the thermodynamically unfavorable 1e- reduction of O2, and the resulting Cu(II)-O2•- is activated toward H atom abstraction from cysteine. The final step of biogenesis is a concerted reaction involving coordinated Tyr ring deprotonation where Cu(II) coordination enables formation of the Cys-Tyr cross-link. These spectroscopic and computational results highlight the role of the Cu(I) in enabling O2 activation by 1e- and the role of the resulting Cu(II) in enabling substrate activation for biogenesis.


Assuntos
Domínio Catalítico , Coenzimas/biossíntese , Cobre/metabolismo , Galactose Oxidase/química , Galactose Oxidase/metabolismo , Oxigênio/metabolismo , Transporte de Elétrons , Ligantes , Modelos Moleculares , Teoria Quântica
8.
Nat Chem ; 8(7): 670-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27325093

RESUMO

S-Nitrosothiols are known as reagents for NO storage and transportation and as regulators in many physiological processes. Although the S-nitrosylation catalysed by haem proteins is well known, no direct evidence of S-nitrosylation in copper proteins has been reported. Here, we report reversible insertion of NO into a copper-thiolate bond in an engineered copper centre in Pseudomonas aeruginosa azurin by rational design of the primary coordination sphere and tuning its reduction potential by deleting a hydrogen bond in the secondary coordination sphere. The results not only provide the first direct evidence of S-nitrosylation of Cu(II)-bound cysteine in metalloproteins, but also shed light on the reaction mechanism and structural features responsible for stabilizing the elusive Cu(I)-S(Cys)NO species. The fast, efficient and reversible S-nitrosylation reaction is used to demonstrate its ability to prevent NO inhibition of cytochrome bo3 oxidase activity by competing for NO binding with the native enzyme under physiologically relevant conditions.


Assuntos
Azurina/química , Azurina/síntese química , S-Nitrosotióis/química , Cobre/química , Cisteína , Ligação de Hidrogênio , Metaloproteínas/química , Óxido Nítrico/metabolismo , Pseudomonas aeruginosa/metabolismo , S-Nitrosotióis/metabolismo
9.
Chemistry ; 22(15): 5133-7, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26919169

RESUMO

We report the Cu(I)/O2 chemistry of complexes derived from the macrocylic ligands 14-TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and 12-TMC (1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane). While [(14-TMC)Cu(I)](+) is unreactive towards dioxygen, the smaller analog [(12-TMC)Cu(I)(CH3CN)](+) reacts with O2 to give a side-on bound peroxo-dicopper(II) species ((S)P), confirmed by spectroscopic and computational methods. Intriguingly, 12-TMC as a N4 donor ligand generates (S)P species, thus in contrast with the previous observation that such species are generated by N2 and N3 ligands. In addition, the reactivity of this macrocyclic side-on peroxo-dicopper(II) differs from typical (S)P species, because it reacts only with acid to release H2O2, in contrast with the classic reactivity of Cu2O2 cores. Kinetics and computations are consistent with a protonation mechanism whereby the TMC acts as a hemilabile ligand and shuttles H(+) to an isomerized peroxo core.


Assuntos
Cobre/química , Compostos Macrocíclicos/química , Compostos Organometálicos/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares
10.
J Am Chem Soc ; 137(8): 2796-9, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25697226

RESUMO

Previous efforts to synthesize a cupric superoxide complex possessing a thioether donor have resulted in the formation of an end-on trans-peroxo-dicopper(II) species, [{(Ligand)Cu(II)}2(µ-1,2-O2(2-))](2+). Redesign/modification of previous N3S tetradentate ligands has now allowed for the stabilization of the monomeric, superoxide product possessing a S(thioether) ligation, [((DMA)N3S)Cu(II)(O2(•-))](+) (2(S)), as characterized by UV-vis and resonance Raman spectroscopies. This complex mimics the putative Cu(II)(O2(•-)) active species of the copper monooxygenase PHM and exhibits enhanced reactivity toward both O-H and C-H substrates in comparison to close analogues [(L)Cu(II)(O2(•-))](+), where L contains only nitrogen donor atoms. Also, comparisons of [(L)Cu(II/I)](n+) compound reduction potentials (L = various N4 vs (DMA)N3S ligands) provide evidence that (DMA)N3S is a weaker donor to copper ion than is found for any N4 ligand-complex.


Assuntos
Cobre/química , Compostos Organometálicos/química , Oxigênio/química , Sulfetos/química , Ligantes , Modelos Moleculares , Conformação Molecular
11.
Inorg Chem ; 52(22): 12872-4, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24164429

RESUMO

The geometry of mononuclear copper(II) superoxide complexes has been shown to determine their ground state where side-on bonding leads to a singlet ground state and end-on complexes have triplet ground states. In an apparent contrast to this trend, the recently synthesized (HIPT3tren)Cu(II)O2(•-) (1) was proposed to have an end-on geometry and a singlet ground state. However, reexamination of 1 with resonance Raman, magnetic circular dichroism, and (2)H NMR spectroscopies indicate that 1 is, in fact, an end-on superoxide species with a triplet ground state that results from the single Cu(II)O2(•-) bonding interaction being weaker than the spin-pairing energy.


Assuntos
Complexos de Coordenação/química , Cobre/química , Superóxidos/química , Elétrons , Espectroscopia de Ressonância Magnética , Conformação Molecular
12.
J Am Chem Soc ; 135(44): 16454-67, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24164682

RESUMO

The protonation­reduction of a dioxygen adduct with [LCu(I)][B(C6F5)4], cupric superoxo complex [LCu(II)(O2(•­))]+ (1) (L = TMG3tren (1,1,1-tris[2-[N(2)-(1,1,3,3-tetramethylguanidino)]ethyl]amine)) has been investigated. Trifluoroacetic acid (HOAcF) reversibly associates with the superoxo ligand in ([LCu(II)(O2(•­))]+) in a 1:1 adduct [LCu(II)(O2(•­))(HOAcF)](+) (2), as characterized by UV­visible, resonance Raman (rR), nuclear magnetic resonance (NMR), and X-ray absorption (XAS) spectroscopies, along with density functional theory (DFT) calculations. Chemical studies reveal that for the binding of HOAcF with 1 to give 2, Keq = 1.2 × 10(5) M(­1) (−130 °C) and ΔH° = −6.9(7) kcal/mol, ΔS° = −26(4) cal mol(­1) K(­1)). Vibrational (rR) data reveal a significant increase (29 cm(­1)) in vO­O (= 1149 cm(­1)) compared to that known for [LCu(II)(O2(•­))](+) (1). Along with results obtained from XAS and DFT calculations, hydrogen bonding of HOAcF to a superoxo O-atom in 2 is established. Results from NMR spectroscopy of 2 at −120 °C in 2-methyltetrahydrofuran are also consistent with 1/HOAcF = 1:1 formulation of 2 and with this complex possessing a triplet (S = 1) ground state electronic configuration, as previously determined for 1. The pre-equilibrium acid association to 1 is followed by outer-sphere electron-transfer reduction of 2 by decamethylferrocene (Me10Fc) or octamethylferrocene (Me8Fc), leading to the products H2O2, the corresponding ferrocenium salt, and [LCu(II)(OAcF)](+). Second-order rate constants for electron transfer (ket) were determined to be 1365 M(­1) s(­1) (Me10Fc) and 225 M(­1) s(­1) (Me8Fc) at −80 °C. The (bio)chemical relevance of the proton-triggered reduction of the metal-bound dioxygen-derived fragment is discussed.


Assuntos
Cobre/química , Compostos Organometálicos/química , Oxigênio/química , Cristalografia por Raios X , Transporte de Elétrons , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Oxirredução , Prótons , Teoria Quântica
13.
J Am Chem Soc ; 134(50): 20352-64, 2012 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-23181620

RESUMO

This manuscript describes the formally iron(I) complexes L(Me)Fe(Py-R)(2) (L(Me) = bulky ß-diketiminate; R = H, 4-tBu), in which the basal pyridine ligands preferentially accept significant unpaired spin density. Structural, spectroscopic, and computational studies on the complex with 4-tert-butylpyridine ((tBu)py) indicate that the S = 3/2 species is a resonance hybrid between descriptions as (a) high-spin iron(II) with antiferromagnetic coupling to a pyridine anion radical and (b) high-spin iron(I). When the pyridine lacks the protection of the tert-butyl group, it rapidly and reversibly undergoes radical coupling reactions that form new C-C bonds. In one reaction, the coordinated pyridine couples to triphenylmethyl radical, and in another, it dimerizes to give a pyridine-derived dianion that bridges two iron(II) ions. The rapid, reversible C-C bond formation in the dimer stores electrons from the formally reduced metal as a C-C bond in the ligands, as demonstrated by using the coupled diiron(II) complex to generate products that are known to come from iron(I) precursors.

14.
Inorg Chem ; 51(15): 8352-61, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22800175

RESUMO

A new ß-diketiminate ligand with 2,4,6-tri(phenyl)phenyl N-substituents provides protective bulk around the metal without exposing any weak C-H bonds. This ligand improves the stability of reactive iron(III) imido complexes with Fe═NAd and Fe═NMes functional groups (Ad = 1-adamantyl; Mes = mesityl). The new ligand gives iron(III) imido complexes that are significantly more reactive toward 1,4-cyclohexadiene than the previously reported 2,6-diisopropylphenyl diketiminate variants. Analysis of X-ray crystal structures implicates Fe═N-C bending, a longer Fe═N bond, and greater access to the metal as potential reasons for the increase in C-H bond activation rates.

15.
J Am Chem Soc ; 133(25): 9796-811, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21563763

RESUMO

In the literature, iron-oxo complexes have been isolated and their hydrogen atom transfer (HAT) reactions have been studied in detail. Iron-imido complexes have been isolated more recently, and the community needs experimental evaluations of the mechanism of HAT from late-metal imido species. We report a mechanistic study of HAT by an isolable iron(III) imido complex, L(Me)FeNAd (L(Me) = bulky ß-diketiminate ligand, 2,4-bis(2,6-diisopropylphenylimido)pentyl; Ad = 1-adamantyl). HAT is preceded by binding of tert-butylpyridine ((t)Bupy) to form a reactive four-coordinate intermediate L(Me)Fe(NAd)((t)Bupy), as shown by equilibrium and kinetic studies. In the HAT step, very large substrate H/D kinetic isotope effects around 100 are consistent with C-H bond cleavage. The elementary HAT rate constant is increased by electron-donating groups on the pyridine additive, and by a more polar medium. When combined with the faster rate of HAT from indene versus cyclohexadiene, this trend is consistent with H(+) transfer character in the HAT transition state. The increase in HAT rate in the presence of (t)Bupy may be explained by a combination of electronic (weaker Fe=N π-bonding) and thermodynamic (more exothermic HAT) effects. Most importantly, HAT by these imido complexes has a strong dependence on the size of the hydrocarbon substrate. This selectivity comes from steric hindrance by the spectator ligands, a strategy that has promise for controlling the regioselectivity of these C-H bond activation reactions.

16.
Inorg Chem ; 49(13): 6172-87, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20524625

RESUMO

Reaction of 1-adamantyl azide with iron(I) diketiminate precursors gives metastable but isolable imidoiron(III) complexes LFe=NAd (L = bulky beta-diketiminate ligand; Ad = 1-adamantyl). This paper addresses (1) the spectroscopic and structural characterization of the Fe=N multiple bond in these interesting three-coordinate iron imido complexes, and (2) the mechanism through which the imido complexes form. The iron(III) imido complexes have been examined by (1)H NMR and electron paramagnetic resonance (EPR) spectroscopies and temperature-dependent magnetic susceptibility (SQUID), and structurally characterized by crystallography and/or extended X-ray absorption fine structure (EXAFS) measurements. These data show that the imido complexes have quartet ground states and short (1.68 +/- 0.01 A) iron-nitrogen bonds. The formation of the imido complexes proceeds through unobserved iron-N(3)R intermediates, which are indicated by QM/MM computations to be best described as iron(II) with an N(3)R radical anion. The radical character on the organoazide bends its NNN linkage to enable easy N(2) loss and imido complex formation. The product distribution between imidoiron(III) products and hexazene-bridged diiron(II) products is solvent-dependent, and the solvent dependence can be explained by coordination of certain solvents to the iron(I) precursor prior to interaction with the organoazide.


Assuntos
Compostos Férricos/química , Imidas/química , Compostos Organometálicos/química , Azidas/química , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Férricos/síntese química , Imidas/síntese química , Espectroscopia de Ressonância Magnética , Magnetismo , Modelos Moleculares , Compostos Organometálicos/síntese química , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Espectroscopia por Absorção de Raios X
17.
Inorg Chem ; 48(11): 4828-36, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19397284

RESUMO

This paper describes the redox chemistry of a tetrazene ligand on (beta-diketiminato)iron complexes. Addition of 1-adamantyl azide to an iron(I) source gives the tetrazene complex L(Me)Fe(AdNNNNAd), most likely through an imidoiron(III) intermediate. Spectroscopic, magnetic, crystallographic, and computational investigations of the tetrazene complex show that one unpaired spin occupies a primarily ligand-based orbital, and is antiferromagnetically coupled to a high-spin iron(II) ion to give an S = 3/2 ground state. Reversible single-electron reduction occurs at the ligand singly occupied molecular orbital (SOMO), affording a dianionic tetrazene ligand while leaving the metal oxidation state and spin state unchanged.


Assuntos
Azidas/química , Compostos Ferrosos/química , Simulação por Computador , Cristalografia por Raios X , Compostos Ferrosos/síntese química , Ligantes , Magnetismo , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Oxirredução , Temperatura
18.
Chem Commun (Camb) ; (13): 1760-2, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19294287

RESUMO

The metastable iron(III) imido species LtBuFeNAd catalyzes transfer of the nitrene fragment NAd from an organic azide to isocyanides or CO, forming unsymmetrical carbodiimides or isocyanates.

19.
J Am Chem Soc ; 130(20): 6624-38, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18444648

RESUMO

We report a survey of the reactivity of the first isolable iron-hydride complexes with a coordination number less than 5. The high-spin iron(II) complexes [(beta-diketiminate)Fe(mu-H)] 2 react rapidly with representative cyanide, isocyanide, alkyne, N 2, alkene, diazene, azide, CO 2, carbodiimide, and Brønsted acid containing substrates. The reaction outcomes fall into three categories: (1) addition of Fe-H across a multiple bond of the substrate, (2) reductive elimination of H 2 to form iron(I) products, and (3) protonation of the hydride to form iron(II) products. The products include imide, isocyanide, vinyl, alkyl, azide, triazenido, benzo[ c]cinnoline, amidinate, formate, and hydroxo complexes. These results expand the range of known bond transformations at iron complexes. Additionally, they give insight into the elementary transformations that may be possible at the iron-molybdenum cofactor of nitrogenases, which may have hydride ligands on high-spin, low-coordinate metal atoms.


Assuntos
Compostos Ferrosos/química , Hidrogênio/química , Alcinos/química , Monóxido de Carbono/química , Cianetos/química , Espectroscopia de Ressonância Magnética/métodos , Molibdoferredoxina/química , Nitrogênio/química , Oxirredutases/química , Espectroscopia de Mossbauer , Difração de Raios X
20.
J Am Chem Soc ; 130(19): 6074-5, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-18419120

RESUMO

This communication reports the first examples of transition metal complexes containing an RNNNNNNR 2- ligand. Addition of 1-azidoadamantane to the diiron(I) synthon LRFeNNFeL R (L R = HC[C(R)N(2,6- iPr 2C 6H 3)] 2; R = methyl, tert-butyl) leads to the diiron complexes L RFe(mu-eta2:eta2-AdN6Ad)FeLR, which are surprisingly thermally stable. Magnetic, Mössbauer, and crystallographic data are consistent with pairs of high-spin iron(II) ions antiferromagnetically coupled through a dianionic AdN6Ad 2- bridge.


Assuntos
Adamantano/análogos & derivados , Azidas/química , Compostos Ferrosos/química , Cristalografia por Raios X , Estrutura Molecular , Oxirredução , Espectroscopia de Mossbauer
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...