Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 187: 106307, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37739136

RESUMO

Air pollution poses a significant threat to human health, though a clear understanding of its mechanism remains elusive. In this study, we sought to better understand the effects of various sized particulate matter from polluted air on Alzheimer's disease (AD) development using an AD mouse model. We exposed transgenic Alzheimer's mice in their prodromic stage to different sized particulate matter (PM), with filtered clean air as control. After 3 or 6 months of exposure, mouse brains were harvested and analyzed. RNA-seq analysis showed that various PM have differential effects on the brain transcriptome, and these effects seemed to correlate with PM size. Many genes and pathways were affected after PM exposure. Among them, we found a strong activation in mRNA Nonsense Mediated Decay pathway, an inhibition in pathways related to transcription, neurogenesis and survival signaling as well as angiogenesis, and a dramatic downregulation of collagens. Although we did not detect any extracellular Aß plaques, immunostaining revealed that both intracellular Aß1-42 and phospho-Tau levels were increased in various PM exposure conditions compared to the clean air control. NanoString GeoMx analysis demonstrated a remarkable activation of immune responses in the PM exposed mouse brain. Surprisingly, our data also indicated a strong activation of various tumor suppressors including RB1, CDKN1A/p21 and CDKN2A/p16. Collectively, our data demonstrated that exposure to airborne PM caused a profound transcriptional dysregulation and accelerated Alzheimer's-related pathology.

2.
J Control Release ; 361: 636-658, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544515

RESUMO

Delivery of therapeutic substances into the brain poses a significant challenge in the treatment of neurological disorders. This is primarily due to the blood-brain barrier (BBB), which restricts access, alongside the limited stability and distribution of these agents within the brain tissue. Here we demonstrate an efficient delivery of microRNA (miRNA) and antisense RNA preferentially to neurons compared to astroglia in the brain of healthy and Alzheimer's disease mice, via disulfide-linked conjugation with poly(ß-L-malic acid-trileucine)-copolymer a biodegradable, amphiphilic, and multivalent platform. By conjugating a D-configured (D3)-peptide (vector) for specific targeting, highly efficient delivery across the BBB is achieved through the Low-Density Lipoprotein Receptor-Related Protein-1 (LRP-1) transcytosis pathway, amyloid beta (Aß) peptides. Nanodrug distribution was determined by fluorescent labeling and analyzed by microscopy in neurons, astroglia, and in extracellular amyloid plaques typical for Alzheimer's disease. Whereas D-configured BBB-vectors can efficiently target neurons, L-configured (e.g., AP2-peptide) guided vector can only cross BBB but not seem to bind neurons. An analysis of post-injection fluorescence distribution, and RNA-seq followed by real-time PCR validation, confirmed a successful in vivo delivery of morpholino-miRNA-186 nanoconjugates into mouse brain. The size and fluorescence intensity of the intracellular nanodrug particulates were analyzed and verified by a competition with non-fluorescent conjugates. Differentially expressed genes (DEGs) from RNA-seq were identified in the nanodrug injected mice, and the changes of selected DEGs related to Alzheimer's disease were further validated by western blot and real-time PCR. Collectively, these results demonstrated that D3-peptide-conjugated nanopolymer drug is able to achieve neuron-selective delivery of miRNA and can serve as an efficient brain delivery vehicle in Alzheimer's disease (AD) mouse models.


Assuntos
Doença de Alzheimer , MicroRNAs , Ácidos Nucleicos , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Ácidos Nucleicos/uso terapêutico , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Nanoconjugados/uso terapêutico , MicroRNAs/uso terapêutico , Neurônios/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
3.
SLAS Technol ; 28(4): 223-229, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36804177

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disease and is characterized by the formation of renal cysts and the eventual development of end-stage kidney disease. One approach to treating ADPKD is through inhibition of the mammalian target of rapamycin (mTOR) pathway, which has been implicated in cell overproliferation, contributing to renal cyst expansion. However, mTOR inhibitors, including rapamycin, everolimus, and RapaLink-1, have off-target side effects including immunosuppression. Thus, we hypothesized that the encapsulation of mTOR inhibitors in drug delivery carriers that target the kidneys would provide a strategy that would enable therapeutic efficacy while minimizing off-target accumulation and associated toxicity. Toward eventual in vivo application, we synthesized cortical collecting duct (CCD) targeted peptide amphiphile micelle (PAM) nanoparticles and show high drug encapsulation efficiency (>92.6%). In vitro analysis indicated that drug encapsulation into PAMs enhanced the anti-proliferative effect of all three drugs in human CCD cells. Analysis of in vitro biomarkers of the mTOR pathway via western blotting confirmed that PAM encapsulation of mTOR inhibitors did not reduce their efficacy. These results indicate that PAM encapsulation is a promising way to deliver mTOR inhibitors to CCD cells and potentially treat ADPKD. Future studies will evaluate the therapeutic effect of PAM-drug formulations and ability to prevent off-target side effects associated with mTOR inhibitors in mouse models of ADPKD.


Assuntos
Rim Policístico Autossômico Dominante , Camundongos , Animais , Humanos , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Micelas , Inibidores de MTOR , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Serina-Treonina Quinases TOR/uso terapêutico , Rim/metabolismo , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Mamíferos/metabolismo
4.
ACS Nano ; 16(8): 11815-11832, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35961653

RESUMO

The ability to cross the blood-brain barrier (BBB) is critical for targeted therapy of the central nerve system (CNS). Six peptide vectors were covalently attached to a 50 kDa poly(ß-l-malic acid)-trileucine polymer forming P/LLL(40%)/vector conjugates. The vectors were Angiopep-2 (AP2), B6, Miniap-4 (M4), and d-configurated peptides D1, D3, and ACI-89, with specificity for transcytosis receptors low-density lipoprotein receptor-related protein-1 (LRP-1), transferrin receptor (TfR), bee venom-derived ion channel, and Aß/LRP-1 related transcytosis complex, respectively. The BBB-permeation efficacies were substantially increased ("boosted") in vector conjugates of P/LLL(40%). We have found that the copolymer group binds at the endothelial membrane and, by an allosterically membrane rearrangement, exposes the sites for vector-receptor complex formation. The specificity of vectors is indicated by competition experiments with nonconjugated vectors. P/LLL(40%) does not function as an inhibitor, suggesting that the copolymer binding site is eliminated after binding of the vector-nanoconjugate. The two-step mechanism, binding to endothelial membrane and allosteric exposure of transcytosis receptors, is supposed to be an integral feature of nanoconjugate-transcytosis pathways. In vivo brain delivery signatures of the nanoconjugates were recapitulated in mouse brains of normal, tumor (glioblastoma), and Alzheimer's disease (AD) models. BBB permeation of the tumor was most efficient, followed by normal and then AD-like brain. In tumor-bearing and normal brains, AP2 was the top performing vector; however, in AD models, D3 and D1 peptides were superior ones. The TfR vector B6 was equally efficient in normal and AD-model brains. Cross-permeation efficacies are manifested through modulated vector coligation and dosage escalation such as supra-linear dose dependence and crossover transcytosis activities.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/patologia , Nanoconjugados , Transcitose , Peptídeos/química , Polímeros/farmacologia , Peptídeos beta-Amiloides/metabolismo
5.
Nat Commun ; 13(1): 3773, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773279

RESUMO

Trace metals have been an important ingredient for life throughout Earth's history. Here, we describe the genome-guided cultivation of a member of the elusive archaeal lineage Caldarchaeales (syn. Aigarchaeota), Wolframiiraptor gerlachensis, and its growth dependence on tungsten. A metagenome-assembled genome (MAG) of W. gerlachensis encodes putative tungsten membrane transport systems, as well as pathways for anaerobic oxidation of sugars probably mediated by tungsten-dependent ferredoxin oxidoreductases that are expressed during growth. Catalyzed reporter deposition-fluorescence in-situ hybridization (CARD-FISH) and nanoscale secondary ion mass spectrometry (nanoSIMS) show that W. gerlachensis preferentially assimilates xylose. Phylogenetic analyses of 78 high-quality Wolframiiraptoraceae MAGs from terrestrial and marine hydrothermal systems suggest that tungsten-associated enzymes were present in the last common ancestor of extant Wolframiiraptoraceae. Our observations imply a crucial role for tungsten-dependent metabolism in the origin and evolution of this lineage, and hint at a relic metabolic dependence on this trace metal in early anaerobic thermophiles.


Assuntos
Archaea , Tungstênio , Anaerobiose , Archaea/metabolismo , Metagenoma , Filogenia
6.
Bioact Mater ; 12: 203-213, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35310381

RESUMO

The clinical application of nanoparticles (NPs) to deliver RNA for therapy has progressed rapidly since the FDA approval of Onpattro® in 2018 for the treatment of polyneuropathy associated with hereditary transthyretin amyloidosis. The emergency use authorization or approval and widespread global use of two mRNA-NP based vaccines developed by Moderna Therapeutics Inc. and Pfizer-BioNTech in 2021 has highlighted the translatability of NP technology for RNA delivery. Furthermore, in clinical trials, a wide variety of NP formulations have been found to extend the half-life of RNA molecules such as microRNA, small interfering RNA, and messenger RNA, with limited safety issues. In this review, we discuss the NP formulations that are already used in the clinic to deliver therapeutic RNA and highlight examples of RNA-NPs which are currently under evaluation for human use. We also detail NP formulations that failed to progress through clinical trials, in hopes of guiding future successful translation of nanomedicine-based RNA therapeutics into the clinic.

7.
Mol Aspects Med ; 83: 100991, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34366123

RESUMO

The use of a variety of RNA molecules, including messenger RNA, small interfering RNA, and microRNA, has shown great potential for prevention and therapy of many pathologies. However, this therapeutic promise has historically been limited by short in vivo half-life, lack of targeted delivery, and safety issues. Nanoparticle (NP)-mediated delivery has been a successful platform to overcome these limitations, with multiple formulations already in clinical trials and approved by the FDA. Although there is a diversity of NPs in terms of material formulation, size, shape, and charge that have been proposed for biomedical applications, specific modifications are required to facilitate sufficient RNA delivery and adequate therapeutic effect. This includes optimization of (i) RNA incorporation into NPs, (ii) specific cell targeting, (iii) cellular uptake and (iv) endosomal escape ability. In this review, we summarize the methods by which NPs can be modified for RNA delivery to achieve optimal therapeutic effects.


Assuntos
Sistemas de Liberação de Medicamentos , MicroRNAs , Nanopartículas , RNA Mensageiro , RNA Interferente Pequeno , Humanos , MicroRNAs/uso terapêutico , RNA Mensageiro/uso terapêutico , RNA Interferente Pequeno/uso terapêutico
8.
Foods ; 10(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34441563

RESUMO

Contamination of meats and meat products with foodborne pathogenic bacteria raises serious safety issues in the food industry. The antibacterial activities of phosphorous-fluorine co-doped TiO2 nanoparticles (PF-TiO2) were investigated against seven foodborne pathogenic bacteria: Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. PF-TiO2 NPs were synthesized hydrothermally at 250 °C for 1, 3, 6 or 12 h, and then tested at three different concentrations (500 µg/mL, 100 µg/mL, 20 µg/mL) for the inactivation of foodborne bacteria under UVA irradiation, daylight exposure or dark conditions. The antibacterial efficacies were compared after 30 min of exposure to light. Distinct differences in the antibacterial activities of the PF-TiO2 NPs, and the susceptibilities of tested foodborne pathogenic bacterium species were found. PF-TiO2/3 h and PF-TiO2/6 h showed the highest antibacterial activity by decreasing the living bacterial cell number from ~106 by ~5 log (L. monocytogenes), ~4 log (EHEC), ~3 log (Y. enterolcolitca, S. putrefaciens) and ~2.5 log (S. aureus), along with complete eradication of C. jejuni and S. Typhimurium. Efficacy of PF-TiO2/1 h and PF-TiO2/12 h NPs was lower, typically causing a ~2-4 log decrease in colony forming units depending on the tested bacterium while the effect of PF-TiO2/0 h was comparable to P25 TiO2, a commercial TiO2 with high photocatalytic activity. Our results show that PF-co-doping of TiO2 NPs enhanced the antibacterial action against foodborne pathogenic bacteria and are potential candidates for use in the food industry as active surface components, potentially contributing to the production of meats that are safe for consumption.

9.
Microorganisms ; 9(3)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801047

RESUMO

Klebsiella pneumoniae is among the leading bacteria that cause nosocomial infections. The capsule of this Gram-negative bacterium is a dominant virulence factor, with a prominent role in defense and biofilm formation. Bacteriophages, which are specific for one bacterial strain and its capsule type, can evoke the lysis of bacterial cells, aided by polysaccharide depolymerase enzymes. In this study, we isolated and characterized a bacteriophage against the nosocomial K. pneumoniae 52145 strain with K2 capsular serotype. The phage showed a narrow host range and stable lytic activity, even when exposed to different temperatures or detergents. Preventive effect of the phage in a nasal colonization model was investigated in vivo. Phlyogenetic analysis showed that the newly isolated Klebsiella phage B1 belongs to the Webervirus genus in Drexlerviridae family. We identified the location of the capsule depolymerase gene of the new phage, which was amplified, cloned, expressed, and purified. The efficacy of the recombinant B1dep depolymerase was tested by spotting on K. pneumoniae strains and it was confirmed that the extract lowers the thickness of the bacterium lawn as it degrades the protective capsule on bacterial cells. As K. pneumoniae strains possessing the K2 serotype have epidemiological importance, the B1 phage and its depolymerase are promising candidates for use as possible antimicrobial agents.

10.
Microorganisms ; 8(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272707

RESUMO

There are still major gaps in our understanding of the bacterial factors that influence the outcomes of human Campylobacter jejuni infection. The aim of this study was to compare the virulence-associated features of 192 human C. jejuni strains isolated from hospitalized patients with diarrhoea (150/192, 78.1%), bloody diarrhoea (23/192, 11.9%), gastroenteritis (3/192, 1.6%), ulcerative colitis (3/192, 1.5%), and stomach ache (2/192, 1.0%). Traits were analysed with genotypic and phenotypic methods, including PCR and extracellular matrix protein (ECMP) binding, adhesion, and invasion capacities. Results were studied alongside patient symptoms, but no distinct links with them could be determined. Since the capacity of C. jejuni to invade host epithelial cells is one of its most enigmatic attributes, a high throughput transcriptomic analysis was performed in the third hour of internalization with a C. jejuni strain originally isolated from bloody diarrhoea. Characteristic groups of genes were significantly upregulated, outlining a survival strategy of internalized C. jejuni comprising genes related (1) to oxidative stress; (2) to a protective sheath formed by the capsule, LOS, N-, and O- glycosylation systems; (3) to dynamic metabolic activity supported by different translocases and the membrane-integrated component of the flagellar apparatus; and (4) to hitherto unknown genes.

11.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033502

RESUMO

The deposition of amyloid-ß (Aß) plaques in the brain is a significant pathological signature of Alzheimer's disease, correlating with synaptic dysfunction and neurodegeneration. Several compounds, peptides, or drugs have been designed to redirect or stop Aß aggregation. Among them, the trideca-peptide CWG-LRKLRKRLLR (mApoE), which is derived from the receptor binding sequence of apolipoprotein E, is effectively able to inhibit Aß aggregation and to promote fibril disaggregation. Taking advantage of Atomic Force Microscopy (AFM) imaging and fluorescence techniques, we investigate if the clustering of mApoE on gold nanoparticles (AuNP) surface may affect its performance in controlling Aß aggregation/disaggregation processes. The results showed that the ability of free mApoE to destroy preformed Aß fibrils or to hinder the Aß aggregation process is preserved after its clustering on AuNP. This allows the possibility to design multifunctional drug delivery systems with clustering of anti-amyloidogenic molecules on any NP surface without affecting their performance in controlling Aß aggregation processes.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Nanopartículas Metálicas/química , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Análise por Conglomerados , Ouro/química , Humanos , Placa Amiloide/metabolismo , Ligação Proteica/fisiologia
12.
J Biomed Nanotechnol ; 15(10): 1997-2024, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31462368

RESUMO

Alzheimer's disease affects millions of people worldwide and this figure is continuously increasing. Currently, there is no resolutive cure for this disorder, but a valid contribution could be provided by nanomedicine, utilizing multi-functionalized nanodevices as drug vehicles with additional features of specific brain targeting. Nanomedicine may represent also a practicable strategy for the pharmaceutical industry that moved from small MW pharmaceuticals to larger biologicals, such as antibodies and nucleotides, as the next generation of drugs, leading to the challenge of effective drug delivery. This review provides a survey on the nano-based strategies for Alzheimer's disease diagnosis and treatment, aiming at enhancing the passage of candidate pharmaceuticals across the BBB, and at supporting the evaluation of new therapeutic agents targeting this disease.


Assuntos
Doença de Alzheimer , Nanopartículas , Doença de Alzheimer/tratamento farmacológico , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina
13.
Eur J Pharm Biopharm ; 142: 70-82, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31176723

RESUMO

Nanoparticles may provide a viable way for neuroprotective drugs to cross the blood-brain barrier (BBB), which limits the passage of most drugs from the peripheral circulation to the brain. Heterotelechelic polymer prodrugs comprising a neuroprotective model drug (adenosine) and a maleimide functionality were synthesized by the "drug-initiated" approach and subsequent nitroxide exchange reaction. Nanoparticles were obtained by nanoprecipitation and exhibited high colloidal stability with diameters in the 162-185 nm range and narrow size distributions. Nanoparticles were then covalently surface-conjugated to different proteins (albumin, α2-macroglobulin and fetuin A) to test their capability of enhancing BBB translocation. Their performances in terms of endothelial permeability and cellular uptake in an in vitro BBB model were compared to that of similar nanoparticles with surface-adsorbed proteins, functionalized or not with the drug. It was shown that bare NPs (i.e., NPs not surface-functionalized with proteins) without the drug exhibited significant permeability and cellular uptake, which were further enhanced by NP surface functionalization with α2-macroglobulin. However, the presence of the drug at the polymer chain-end prevented efficient passage of all types of NPs through the BBB model, likely due to adecrease in the hydrophobicity of the nanoparticle surface and alteration of the protein binding/coupling, respectively. These results established a new and facile synthetic approach for the surface-functionalization of polymer nanoparticles for brain delivery purposes.


Assuntos
Barreira Hematoencefálica/metabolismo , Nanopartículas/metabolismo , Polímeros/metabolismo , Pró-Fármacos/metabolismo , Proteínas/metabolismo , Adsorção/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Portadores de Fármacos/metabolismo , Humanos , Permeabilidade/efeitos dos fármacos
14.
Front Neurosci ; 13: 419, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156358

RESUMO

Much evidence suggests a protective role of high-density lipoprotein (HDL) and its major apolipoprotein apoA-I, in Alzheimer's disease (AD). The biogenesis of nascent HDL derived from a first lipidation of apoA-I, which is synthesized by the liver and intestine but not in the brain, in a process mediated by ABCA1. The maturation of nascent HDL in mature spherical HDL is due to a subsequent lipidation step, LCAT-mediated cholesterol esterification, and the change of apoA-I conformation. Therefore, different subclasses of apoA-I-HDL simultaneously exist in the blood circulation. Here, we investigated if and how the lipidation state affects the ability of apoA-I-HDL to target and modulate the cerebral ß-amyloid (Aß) content from the periphery, that is thus far unclear. In particular, different subclasses of HDL, each with different apoA-I lipidation state, were purified from human plasma and their ability to cross the blood-brain barrier (BBB), to interact with Aß aggregates, and to affect Aß efflux across the BBB was assessed in vitro using a transwell system. The results showed that discoidal HDL displayed a superior capability to promote Aß efflux in vitro (9 × 10-5 cm/min), when compared to apoA-I in other lipidation states. In particular, no effect on Aß efflux was detected when apoA-I was in mature spherical HDL, suggesting that apoA-I conformation, and lipidation could play a role in Aß clearance from the brain. Finally, when apoA-I folded its structure in discoidal HDL, rather than in spherical ones, it was able to cross the BBB in vitro and strongly destabilize the conformation of Aß fibrils by decreasing the order of the fibril structure (-24%) and the ß-sheet content (-14%). These data suggest that the extent of apoA-I lipidation, and consequently its conformation, may represent crucial features that could exert their protective role in AD pathogenesis.

15.
Biomed Res Int ; 2018: 7569645, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105246

RESUMO

Escherichia (E.) coli K1 strains remain common causative agents of neonatal sepsis and meningitis. We have isolated a lytic bacteriophage (ΦIK1) against E. coli strain IHE3034 and tested its specificity in vitro, as well as distribution and protective efficacy in vivo. The phage was shown to be specific to the K1 capsular polysaccharide. In the lethal murine model, a high level of protection was afforded by the phage with strict kinetics. A single dose of 1 x 108 phage particles administered 10 and 60 minutes following the bacterial challenge elicited 100 % and 95 % survival, respectively. No mice could be rescued if phage administration occurred 3 hours postinfection. Tissue distribution surveys in the surviving mice revealed that the spleen was the primary organ in which accumulation of active ΦIK1 phages could be detected two weeks after phage administration. These results suggest that bacteriophages have potential as therapeutic agents in the control of systemic infections.


Assuntos
Bacteriófagos , Infecções por Escherichia coli/tratamento farmacológico , Animais , Modelos Animais de Doenças , Escherichia coli/patogenicidade , Cinética , Camundongos , Sepse
16.
ACS Nano ; 12(7): 7292-7300, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29953205

RESUMO

Engineered nanoparticles offer the chance to improve drug transport and delivery through biological barriers, exploiting the possibility to leave the blood circulation and traverse the endothelial vascular bed, blood-brain barrier (BBB) included, to reach their target. It is known that nanoparticles gather molecules on their surface upon contact with biological fluids, forming the "protein corona", which can affect their fate and therapeutic/diagnostic performance, yet no information on the corona's evolution across the barrier has been gathered so far. Using a cellular model of the BBB and gold nanoparticles, we show that the composition of the corona undergoes dramatic quantitative and qualitative molecular modifications during passage from the "blood" to the "brain" side, while it is stable once beyond the BBB. Thus, we demonstrate that the nanoparticle corona dynamically and drastically evolves upon crossing the BBB and that its initial composition is not predictive of nanoparticle fate and performance once beyond the barrier at the target organ.


Assuntos
Barreira Hematoencefálica/metabolismo , Nanopartículas/metabolismo , Coroa de Proteína/metabolismo , Barreira Hematoencefálica/química , Células Endoteliais/química , Células Endoteliais/metabolismo , Humanos , Nanopartículas/química , Coroa de Proteína/química
17.
Nanomedicine (Lond) ; 13(6): 585-594, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29376461

RESUMO

AIM: To investigate if and how the ability of liposomes, previously designed for Alzheimer's therapy, to reach the brain changes in aging/pathological conditions with respect to the healthy state. METHODS: Biodistribution and pharmacokinetics of liposomes in young or aged healthy mice and in an Alzheimer's mouse model were measured by radiochemical techniques. The expression of brain receptors and structural proteins was evaluated by Western blot. RESULTS: At equal blood levels, the amount and integrity of liposomes in the brain were dramatically lower in Alzheimer's or aged mice, with respect to young animals. These differences are likely attributable to molecular alterations in the brain vasculature. CONCLUSION: Brain alterations in pathology or aging should be considered in the design of drug delivery systems for brain targeting.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Lipossomos/administração & dosagem , Envelhecimento/efeitos dos fármacos , Doença de Alzheimer/patologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Camundongos , Distribuição Tecidual
18.
J Med Microbiol ; 66(3): 377-387, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28327271

RESUMO

PURPOSE: The treatment of device-related infections is challenging and current anti-microbial compounds have poor anti-biofilm activity. We aimed to identify and characterize novel compounds effective in the eradication of Staphylococcus aureus biofilms. METHODOLOGY: Two novel compounds, MMV665953 {1-(3-chloro-4-fluorophenyl)-3-(3,4-dichlorophenyl)urea} and MMV665807{5-chloro-2-hydroxy-N-[3-(trifluoromethyl)phenyl]benzamide}, effective in killing S. aureus biofilms, were identified by screening of the open access 'malaria box' chemical library. The minimum bactericidal concentrations, half-maximal inhibition concentration (IC50) values and minimal biofilm killing concentrations effective in the killing of biofilm were determined against meticillin-resistant S. aureus and meticillin-sensitive S. aureus. Fibrin-embedded biofilms were grown under in vivo-relevant conditions, and viability was measured using a resazurin-conversion assay and confocal microscopy. The potential for the development of resistance and cytotoxicity was also assessed. RESULTS: MMV665953 and MMV665807 were bactericidal against S. aureus isolates. The IC50 against S. aureus biofilms was at 0.15-0.58 mg l-1 after 24 h treatment, whereas the concentration required to eradicate all tested biofilms was 4 mg l-1, making the compounds more bactericidal than conventional antibiotics. The cytotoxicity against human keratinocytes and primary endothelial cells was determined as IC50 7.47 and 0.18 mg l-1 for MMV665953, and as 1.895 and 0.076 mg l-1 for MMV665807. Neither compound was haemolytic nor caused platelet activation. MMV665953 and MMV665807 derivatives with reduced cytotoxicity exhibited a concomitant loss in anti-staphylococcal activity. CONCLUSION: MMV665953 and MMV665807 are more bactericidal against S. aureus biofilms than currently used anti-staphylococcal antibiotics and represent a valuable structural basis for further investigation in the treatment of staphylococcal biofilm-related infections.


Assuntos
Antimaláricos/farmacologia , Benzamidas/farmacologia , Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
19.
Front Microbiol ; 4: 387, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24381569

RESUMO

Synechococcus sp. WH 8102 is a motile marine cyanobacterium isolated originally from the Sargasso Sea. To test the response of this organism to cadmium (Cd), generally considered a toxin, cultures were grown in a matrix of high and low zinc (Zn) and phosphate (PO4 (3-)) and were then exposed to an addition of 4.4 pM free Cd(2+) at mid-log phase and harvested after 24 h. Whereas Zn and PO4 (3-) had little effect on overall growth rates, in the final 24 h of the experiment three growth effects were noticed: (i) low PO4 (3-) treatments showed increased growth rates relative to high PO4 (3-) treatments, (ii) the Zn/high PO4 (3-) treatment appeared to enter stationary phase, and (iii) Cd increased growth rates further in both the low PO4 (3-) and Zn treatments. Global proteomic analysis revealed that: (i) Zn appeared to be critical to the PO4 (3-) response in this organism, (ii) bacterial metallothionein (SmtA) appears correlated with PO4 (3-) stress-associated proteins, (iii) Cd has the greatest influence on the proteome at low PO4 (3-) and Zn, (iv) Zn buffered the effects of Cd, and (v) in the presence of both replete PO4 (3-) and added Cd the proteome showed little response to the presence of Zn. Similar trends in alkaline phosphate (ALP) and SmtA suggest the possibility of a Zn supply system to provide Zn to ALP that involves SmtA. In addition, proteome results were consistent with a previous transcriptome study of PO4 (3-) stress (with replete Zn) in this organism, including the greater relative abundance of ALP (PhoA), ABC phosphate binding protein (PstS) and other proteins. Yet with no Zn in this proteome experiment the PO4 (3-) response was quite different including the greater relative abundance of five hypothetical proteins with no increase in PhoA or PstS, suggesting that Zn nutritional levels are connected to the PO4 (3-) response in this cyanobacterium. Alternate ALP PhoX (Ca) was found to be a low abundance protein, suggesting that PhoA (Zn, Mg) may be more environmentally relevant than PhoX.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA