Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cancer Prev Curr Res ; 11(1): 13-18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34765722

RESUMO

This study presents the applicability of a novel nitro-substituted heterocyclic compound NBQ48, member of the family of compounds identified as 3 nitrobenzazolo[3, 2-a] quinolinium chloride salts (NBQS) as a screening tool to identify hypoxic tumor cells. The applicability was tested on COLO 205 colon cancer cells 2D and 3D cultures treated with NBQ48 to assess the formation of a bio-reduction fluorescent metabolite under hypoxic conditions in contrast, to those under aerobic environment. Hypoxic environment was created applying a controlled hypoxic gas chamber. Prior to testing the applicability of NBQ48 as a hypoxic fluorescent marker, cytotoxic studies where performed to identify a low-toxicity dose at 24 hours under aerobic and hypoxic environments that would allow the bio-reduction process with little toxicity. The differences in fluorescence emission after treatment was measured by fluorometer and fluorescence microscopy. Results indicated that cell treatments up to 24 hours with NBQ48 under aerobic environment did not reach an IC50 dose in COLO205 cells, however under hypoxic environment the IC50 reached at 100µM. The significant fluorescence increment after 24 and 48 hrs in 2D and 3D cultures treated with NBQ48 (75uM) at hypoxic in contrast to aerobic environments clearly demonstrated the need of a low oxygen content for the bio-reduction of the parent NBQ48. This study confirms the applicability of NBQ48 as markers for hypoxia in metabolically active 2D and 3D cultures. This hydrophilic hypoxic marker could additionally aid researchers in testing hypoxia activated pro-drugs for therapeutic applications in cancer as well as on other diseases where cellular hypoxia is a significant risk factor.

2.
Open Med Chem J ; 11: 54-65, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28761559

RESUMO

OBJECTIVES: The present study evaluates novel cationic quinoline derivatives known as benzimidazo[3,2-a]quinolinium salts (BQS) named NBQ-48 and ABQ-48 that have structural similarities to known anti-cancer substances such as ellipticine and berberine. METHODS: Toledo human lymphoma (ATCC CRL2631) cells were treated for 24 to 48 hours. Apoptosis related endpoints such as cell cycle arrest, mitochondrial damage, RNS and ROS generation and the activity of several apoptosis related proteins such as caspases and apoptosis inducing factor (AIF) were studied using fluorescence staining and western blot respectively. RESULTS: Results indicated a higher toxicity from the amino substituted ABQ-48 versus the NBQ-48 (GI50's of 50uM versus 100uM respectively). Both compounds induced cell death through various apoptosis related endpoints including a decrease in mitochondrial membrane potential with an increase in ROS and activation of the effector caspase 3. Interestingly, AIF release was observed on cells treated with the amino substituted ABQ-48 but not on the nitro substituted NBQ-48 samples suggesting a caspase independent mechanism for ABQ-48. CONCLUSIONS: The results obtained presents the toxic effects of two novel benzimidazo[3,2-a]quinolinium salts in human lymphoma tumor cells. The identified mechanism of action includes multiple apoptosis related effects. Furthermore the data presents a clear variation in caspase dependent or independent mechanism for each compound.

3.
Artigo em Inglês | MEDLINE | ID: mdl-26086027

RESUMO

ABQ-48 (3-amino-7-benzylbenzimidazo[3,2-a]quinolinium chloride) and NBQ-48 (3-nitro-7-benzylbenzimidaw[3,2-a] quinolinium chloride) are un-natural alkaloids containing a planar heteroaromatic systems characterized by quaternized nitrogen fused to benzothiazole nucleus. Both compounds are structurally related to naturally occurring substances such as elliptine (from Ochrosia), and berberine (from Berberis). Previous in vitro studies have shown these agents to control tumor-cell proliferation indicating that both BQS are active but especially ABQ-48 at a 1 OuM dose with over 80% control of the proliferation of multiple cancer cell lines from various etiologies including colon, melanoma, CNS and ovarian cells. Mechanism of action studies have also been conducted however this is the first approach to evaluate immune modulatory activity of these novel BQS. Immune-based therapy is an increasing field in which scientists identify how the immunomodulatory activity of known and newly discovered compounds elicits an immune response that could be used against diseases. In this study, our main objective was to apply an in vitro model to show the immunomodulatory effects of ABQ-48 and NBQ-48 by analyzing the cytokine profile resulting after extracted murine spleen cells were treated with both BQS using a fluorescence-based multiplex ELISA approach. Screened cytokines included: G-CSF, GM-CSF, IL-1a, IL-2, IL-3, IL-5, IL-6, IL-7, IL-10, IL-12p70, IL-13, IL-15, IL-17, IL-21, IL-23, IFN-γ, and TNF-α. Our study results show ABQ 48 and NBQ-48 to stimulate the release of G-CSF, IL-2, IL-6, and, IFN-γ when mouse splenocytes are incubated with serial dilutions of these agents. Our finding opens new possibilities of potentially using ABQ-48 and NBQ-48 as immunomodulatory agents; with intend to activate the immune system such as the production of neutrophils against cancer or reducing chemotherapy side effects.

4.
Open J Apoptosis ; 2(2): 13-22, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25243104

RESUMO

This study reports the capacity of three nitro substituted benzazolo[3,2-a]quinolinium salts NBQs: NBQ 95 (NSC-763304), NBQ 38 (NSC 763305), and NBQ 97 (NSC-763306) as potential antitumor agents. NBQ's are unnatural alkaloids possessing a positive charge that could facilitate interaction with cell organelles. The anticancer activities of these compounds were evaluated through the National Cancer Institute (NCI) 60 cell line screening which represents diverse histologies. The screening was performed at 10 µM on all cell lines. Results from the NCI screening indicated cytotoxicity activity on six cell lines. In order to explore a possible mechanism of action, a detailed biological activity study of NBQ 95 and NBQ 38 was performed on A431 human epidermoid carcinoma cells to determine an apoptotic pathway involving, cell cycle changes, DNA fragmentation, mutations, mitochondrial membrane permeabilization and caspases activation. DNA fragmentation, cell cycle effects, mutagenesis, mitochondrial permeabilization and activation of caspases were determined by fluorimetry and differential imaging. Our data showed that A431 growth was inhibited with an average IC50 of 30 µM. In terms of the mechanism, these compounds interacted with DNA causing fragmentation and cell cycle arrest at sub G0/G1 stage. Mutagenesis was higher for NBQ 38 and moderate for NBQ 95 Mitochon-drial permeabilization was observed with NBQ 38 and slightly for NBQ 95. Both compounds caused activation of Caspases 3 and 7 suggesting an apoptotic cell death pathway through an intrinsic mechanism. This study reports evidence of the toxicity of these novel compounds with overlapping structural and mechanistic similarities to ellipticine, a known anti-tumor compound.

5.
Chem Res Toxicol ; 21(9): 1706-15, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18759504

RESUMO

Interest in DNA binding drugs has increased in recent years due to their importance in the treatment of genome-related diseases, like cancer. A new family of water-soluble DNA binding compounds, the benzothiazolo[3,2- a]quinolinium chlorides (BQCls), is studied here as potential candidates for chemical treatment of solid tumor cells that may encounter low-oxygen environments, a condition known as hypoxia. These compounds are good DNA intercalators; however, no studies have been made of these compounds under hypoxic conditions. This work demonstrates the importance of the nitro-functionality in the DNA binding of 3-nitro-10-methylbenzothiazolo[3,2- a]quinolinium chloride (NBQ-91), which possesses nitro-functionality, and 10-methylbenzothiazolo[3,2- a]quinolinium chloride (BQ-106), which does not. Both NBQ-91 and BQ-106 have similar noncovalent binding affinity toward DNA. Dialysis experiments show that NBQ-91 binds DNA under N2-saturated conditions with increasing concentrations of reducing agent, presumably due to reduction of the nitro-functionality. Conversely, because of the lack of nitro-functionality, the presence of a reducing agent had no effect on BQ-106 binding to DNA under both aerobic and N2-saturated conditions. Clonogenic assays were performed to determine the quinolinium chloride cytotoxicities under both aerobic (95% air and 5% CO2) and hypoxic (80% N2 and 20% CO2) conditions. The calculated ratios of cellular toxicity under aerobic to hypoxic conditions caused by the same concentration of test agent (CTR values) show greater levels of cell death under hypoxia than under aerobic conditions for mitomycin C (MC) (CTR = 0.7 at 1 microM) and NBQ-91 (CTR = 0.4 at 200 microM) than for BQ-106 (CTR = 1.0 at 200 microM), which agreed with the previously reported data for MC and confirmed the importance of nitro-functionality for reactivity under hypoxic conditions. There was no correlation between noncovalent binding affinity constants and their cytotoxicity under hypoxic conditions. Adduct formation between the NBQ-91 and 2'-dG was also assessed by reacting 2'-dG or DNA with NBQ-91 and BQ-106 under N2-saturated conditions in the presence of hypoxanthine and xanthine oxidase (HX/XO). DNA covalent adduct formation was analyzed by two techniques: LC-ESI-MS and Sephadex size exclusion chromatography. LC-ESI-MS results clearly indicate the formation of a prominent molecular ion at masses of 266.0 and 530.58 Da, corresponding to the [M + H](+2) and [M](+) molecular ions of the monitored 2'-dG-NBQ-91 adduct. Results from the Sephadex size exclusion chromatography support these findings because the NBQ-91 elution percentage increases in the presence of HX/XO due to the reduction of the nitro-functionality, which results in covalent binding to DNA. This study reports evidence of the DNA binding capacity of this bioreductive drug. The preferential N2-saturated over aerobic conditions for DNA binding makes NBQ-91 a potential bioreductive compound for hypoxic cell killing.


Assuntos
Adutos de DNA/química , DNA/química , Compostos de Quinolínio/química , Tiazóis/química , Animais , Sítios de Ligação , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hipoxantina/química , Estrutura Molecular , Oxirredução , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , Estereoisomerismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ácido Úrico/metabolismo , Xantina Oxidase/química
6.
Toxicol In Vitro ; 21(6): 1155-64, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17466486

RESUMO

The DNA binding capacity of two nitro-substituted benzazolo[3,2-a]quinolinium chlorides (NBQs), NBQ-38 and NBQ-95, was evaluated upon their enzymatic reduction with hypoxanthine (HX)/xanthine oxidase (XO) under anaerobic conditions. In the presence of 2'-deoxyguanosine (2'-dG) or calf thymus DNA, covalent-addition products were monitored. Reactions of each NBQ with 2'-dG or DNA differed in the NBQ to HX molar ratio. Control reactions, one without HX/OX and another under aerobic conditions, were also analyzed. Adducts were isolated and characterized by high performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS). Authentic samples of the reduced forms of these NBQs, identified as ABQ-38 and ABQ-95, were synthesized as standards to monitor bioreduction processes. HPLC analysis showed that the yield of formation of an unknown product (possibly, 2'-dG-NHBQ-38 adduct) from the reaction of NBQ-38 with 2'-dG and DNA was proportional to the HX to NBQ-38 molar ratio. ESI-MS analysis of the DNA hydrolysates showed evidence of an adduct formed upon bioreduction of NBQ-38 by the ions detection at m/z 528.3 and 454.8, consistent with chemical structures of a 2'-dG-NHBQ-38 adduct and a fragment ion. DNA adducts were not observed with NBQ-95, although the corresponding bioreduction product ABQ-95 was detected by ESI-MS. This study provides mechanistic information of these bioreductively-activated pro-drugs with potential therapeutic applications.


Assuntos
Adutos de DNA , Compostos de Quinolínio/metabolismo , Antineoplásicos/metabolismo , Cromatografia Líquida de Alta Pressão , DNA/metabolismo , Hipoxantina/metabolismo , Oxirredução , Pró-Fármacos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Xantina Oxidase/metabolismo
7.
Toxicology ; 199(2-3): 87-96, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15147783

RESUMO

Derivatives of benzazolo[3,2-a]quinolium salts (QSDs) are reductively activated by the enzymatic reducing agents hypoxanthine (or xanthine)/xanthine oxidase and NADH dehydrogenase as evidenced by the increase in rates of ferricytochrome c (Cyt(III)c) reduction and oxygen consumption, respectively. No correlation between Michaelis-Menten parameters and QSDs redox potentials was found regarding anaerobic or aerobic Cyt(III)c reduction, although maximum rates were observed for nitro-containing QSDs. However, oxygen consumption rates correlate with QSDs redox potentials when NADH dehydrogenase is used as reducing agent. QSDs bind covalently to bovine serum albumin (BSA) under anaerobic conditions, in the presence, and less in the absence, of HX/XO and only if the nitro group is present at the QSD. QSDs react with glutathione (GSH) in the presence of HX/XO but not in its absence, under anaerobic conditions. The amount of reacted GSH increases, and the relative amount of GSSG formed decreases, with an increase in the QSD reduction potential, thus indicating that GSH reacts with reduced nitro-containing QSDs mainly in a manner which does not involve the production of GSSG, presumably, through the formation of the nitroso-QSD-GSH conjugate. QSDs are, thus, novel nitro-containing heterocyclic compounds which could be bioreductively activated to react with oxygen and thiols.


Assuntos
Compostos de Quinolínio/química , Substâncias Redutoras/química , Compostos de Sulfidrila/química , Animais , Bovinos , Cinética , NADH Desidrogenase/metabolismo , Oxirredução , Consumo de Oxigênio , Ligação Proteica , Soroalbumina Bovina/metabolismo , Xantina/metabolismo , Xantina Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA