Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 12(46): 15239-15252, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34976344

RESUMO

Light-to-heat conversion materials generate great interest due to their widespread applications, notable exemplars being solar energy harvesting and photoprotection. Another more recently identified potential application for such materials is in molecular heaters for agriculture, whose function is to protect crops from extreme cold weather and extend both the growing season and the geographic areas capable of supporting growth, all of which could help reduce food security challenges. To address this demand, a new series of phenolic-based barbituric absorbers of ultraviolet (UV) radiation has been designed and synthesised in a sustainable manner. The photophysics of these molecules has been studied in solution using femtosecond transient electronic and vibrational absorption spectroscopies, allied with computational simulations and their potential toxicity assessed by in silico studies. Following photoexcitation to the lowest singlet excited state, these barbituric absorbers repopulate the electronic ground state with high fidelity on an ultrafast time scale (within a few picoseconds). The energy relaxation pathway includes a twisted intramolecular charge-transfer state as the system evolves out of the Franck-Condon region, internal conversion to the ground electronic state, and subsequent vibrational cooling. These barbituric absorbers display promising light-to-heat conversion capabilities, are predicted to be non-toxic, and demand further study within neighbouring application-based fields.

2.
J Phys Chem Lett ; 12(1): 337-344, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33353308

RESUMO

The sparsity of efficient commercial ultraviolet-A (UV-A) filters is a major challenge toward developing effective broadband sunscreens with minimal human- and eco-toxicity. To combat this, we have designed a new class of Meldrum-based phenolic UV-A filters. We explore the ultrafast photodynamics of coumaryl Meldrum, CMe, and sinapyl Meldrum (SMe), both in an industry-standard emollient and on a synthetic skin mimic, using femtosecond transient electronic and vibrational absorption spectroscopies and computational simulations. Upon photoexcitation to the lowest excited singlet state (S1), these Meldrum-based phenolics undergo fast and efficient nonradiative decay to repopulate the electronic ground state (S0). We propose an initial ultrafast twisted intramolecular charge-transfer mechanism as these systems evolve out of the Franck-Condon region toward an S1/S0 conical intersection, followed by internal conversion to S0 and subsequent vibrational cooling. Importantly, we correlate these findings to their long-term photostability upon irradiation with a solar simulator and conclude that these molecules surpass the basic requirements of an industry-standard UV filter.


Assuntos
Materiais Biomiméticos/química , Protetores contra Radiação/química , Pele , Raios Ultravioleta/efeitos adversos , Humanos , Modelos Moleculares , Conformação Molecular , Pele/efeitos da radiação
3.
Front Chem ; 8: 574038, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102444

RESUMO

With the growing concern regarding commercially available ultraviolet (UV) filters damaging the environment, there is an urgent need to discover new UV filters. A family of molecules called mycosporines and mycosporine-like amino acids (referred to as MAAs collectively) are synthesized by cyanobacteria, fungi and algae and act as the natural UV filters for these organisms. Mycosporines are formed of a cyclohexenone core structure while mycosporine-like amino acids are formed of a cyclohexenimine core structure. To better understand the photoprotection properties of MAAs, we implement a bottom-up approach by first studying a simple analog of an MAA, 3-aminocyclohex-2-en-1-one (ACyO). Previous experimental studies on ACyO using transient electronic absorption spectroscopy (TEAS) suggest that upon photoexcitation, ACyO becomes trapped in the minimum of an S1 state, which persists for extended time delays (>2.5 ns). However, these studies were unable to establish the extent of electronic ground state recovery of ACyO within 2.5 ns due to experimental constraints. In the present studies, we have implemented transient vibrational absorption spectroscopy (as well as complementary TEAS) with Fourier transform infrared spectroscopy and density functional theory to establish the extent of electronic ground state recovery of ACyO within this time window. We show that by 1.8 ns, there is >75% electronic ground state recovery of ACyO, with the remaining percentage likely persisting in the electronic excited state. Long-term irradiation studies on ACyO have shown that a small percentage degrades after 2 h of irradiation, plausibly due to some of the aforementioned trapped ACyO going on to form a photoproduct. Collectively, these studies imply that a base building block of MAAs already displays characteristics of an effective UV filter.

4.
J Phys Chem Lett ; 11(16): 6677-6683, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32680426

RESUMO

Atomic-scale defects can control the exploitable optoelectronic performance of crystalline materials, and several point defects in diamond are emerging functional components for a range of quantum technologies. Nitrogen and hydrogen are common impurities incorporated into diamond, and there is a family of defects that includes both. The N3VH0 defect is a lattice vacancy where three nearest neighbor carbon atoms are replaced with nitrogen atoms and a hydrogen is bonded to the remaining carbon. It is regularly observed in natural and high-temperature annealed synthetic diamond and gives rise to prominent absorption features in the mid-infrared. Here, we combine time- and spectrally resolved infrared absorption spectroscopy to yield unprecedented insight into the N3VH0 defect's vibrational dynamics following infrared excitation of the C-H stretch. In doing so, we gain fundamental information about the energies of quantized vibrational states and corroborate our results with theory. We map out, for the first time, energy relaxation pathways, which include multiphonon relaxation processes and anharmonic coupling to the C-H bend mode. These advances provide new routes to quantify and probe atomic-scale defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA