Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 18(15): e202300240, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37195570

RESUMO

Dihydrofolate reductase (DHFR) is a key enzyme involved in the folate pathway that has been heavily targeted for the development of therapeutics against cancer and bacterial and protozoa infections amongst others. Despite being an essential enzyme for Mycobacterium tuberculosis (Mtb) viability, DHFR remains an underexploited target for tuberculosis (TB) treatment. Herein, we report the preparation and evaluation of a series of compounds against Mtb DHFR (MtbDHFR). The compounds have been designed using a merging strategy of traditional pyrimidine-based antifolates with a previously discovered unique fragment hit against MtbDHFR. In this series, four compounds displayed a high affinity against MtbDHFR, with sub-micromolar affinities. Additionally, we determined the binding mode of six of the best compounds using protein crystallography, which revealed occupation of an underutilised region of the active site.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37004488

RESUMO

Toxoplasma gondii is a pervasive apicomplexan parasite that can cause severe disease and death in immunocompromised individuals and the developing foetus. The treatment of toxoplasmosis often leads to serious side effects and novel drugs and drug targets are therefore actively sought. In 2014, Mageed and colleagues suggested that the T. gondii pantothenate synthetase, the enzyme responsible for the synthesis of the vitamin B5 (pantothenate), the precursor of the important cofactor, coenzyme A, is a good drug target. Their conclusion was based on the ability of potent inhibitors of the M. tuberculosis pantothenate synthetase to inhibit the proliferation of T. gondii tachyzoites. They also reported that the inhibitory effect of the compounds could be antagonised by supplementing the medium with pantothenate, supporting their conclusion that the compounds were acting on the intended target. Contrary to these observations, we find that compound SW314, one of the compounds used in the Mageed et al. study and previously shown to be active against M. tuberculosis pantothenate synthetase in vitro, is inactive against the T. gondii pantothenate synthetase and does not inhibit tachyzoite proliferation, despite gaining access into the parasite in situ. Furthermore, we validate the recent observation that the pantothenate synthetase gene in T. gondii can be disrupted without detrimental effect to the survival of the tachyzoite-stage parasite in the presence or absence of extracellular pantothenate. We conclude that the T. gondii pantothenate synthetase is not essential during the tachyzoite stage of the parasite and it is therefore not a target for drug discovery against T. gondii tachyzoites.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Tuberculose , Humanos , Animais , Toxoplasma/genética , Toxoplasmose/tratamento farmacológico , Coenzima A
3.
Chemistry ; 29(29): e202203868, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912255

RESUMO

Mycobacterium tuberculosis (Mtb) was responsible for approximately 1.6 million deaths in 2021. With the emergence of extensive drug resistance, novel therapeutic agents are urgently needed, and continued drug discovery efforts required. Host-derived lipids such as cholesterol not only support Mtb growth, but are also suspected to function in immunomodulation, with links to persistence and immune evasion. Mtb cytochrome P450 (CYP) enzymes facilitate key steps in lipid catabolism and thus present potential targets for inhibition. Here we present a series of compounds based on an ethyl 5-(pyridin-4-yl)-1H-indole-2-carboxylate pharmacophore which bind strongly to both Mtb cholesterol oxidases CYP125 and CYP142. Using a structure-guided approach, combined with biophysical characterization, compounds with micromolar range in-cell activity against clinically relevant drug-resistant isolates were obtained. These will incite further development of much-needed additional treatment options and provide routes to probe the role of CYP125 and CYP142 in Mtb pathogenesis.


Assuntos
Mycobacterium tuberculosis , Sistema Enzimático do Citocromo P-450/metabolismo , Colesterol/química , Descoberta de Drogas , Antituberculosos/farmacologia , Antituberculosos/química
4.
Angew Chem Int Ed Engl ; 62(17): e202300221, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36757665

RESUMO

The coenzyme A (CoA) biosynthesis pathway has attracted attention as a potential target for much-needed novel antimicrobial drugs, including for the treatment of tuberculosis (TB), the lethal disease caused by Mycobacterium tuberculosis (Mtb). Seeking to identify inhibitors of Mtb phosphopantetheine adenylyltransferase (MtbPPAT), the enzyme that catalyses the penultimate step in CoA biosynthesis, we performed a fragment screen. In doing so, we discovered three series of fragments that occupy distinct regions of the MtbPPAT active site, presenting a unique opportunity for fragment linking. Here we show how, guided by X-ray crystal structures, we could link weakly-binding fragments to produce an active site binder with a KD <20 µM and on-target anti-Mtb activity, as demonstrated using CRISPR interference. This study represents a big step toward validating MtbPPAT as a potential drug target and designing a MtbPPAT-targeting anti-TB drug.


Assuntos
Mycobacterium tuberculosis , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Nucleotidiltransferases/metabolismo , Antituberculosos/farmacologia
5.
Angew Chem Weinheim Bergstr Ger ; 135(17): e202300221, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38515507

RESUMO

The coenzyme A (CoA) biosynthesis pathway has attracted attention as a potential target for much-needed novel antimicrobial drugs, including for the treatment of tuberculosis (TB), the lethal disease caused by Mycobacterium tuberculosis (Mtb). Seeking to identify inhibitors of Mtb phosphopantetheine adenylyltransferase (MtbPPAT), the enzyme that catalyses the penultimate step in CoA biosynthesis, we performed a fragment screen. In doing so, we discovered three series of fragments that occupy distinct regions of the MtbPPAT active site, presenting a unique opportunity for fragment linking. Here we show how, guided by X-ray crystal structures, we could link weakly-binding fragments to produce an active site binder with a K D <20 µM and on-target anti-Mtb activity, as demonstrated using CRISPR interference. This study represents a big step toward validating MtbPPAT as a potential drug target and designing a MtbPPAT-targeting anti-TB drug.

6.
Chem Biol Drug Des ; 100(4): 469-486, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35854428

RESUMO

Fragment-based drug discovery (FBDD) is a method of identifying small molecule hits that can be elaborated rationally through fragment growing, merging and linking, to afford high-affinity ligands for biological targets. Despite the promised theoretical potential of fragment linking, examples are still surprisingly sparse and remain overshadowed by the successes of fragment growing. The aim of this review was to outline a number of key examples of fragment-linking strategies and discuss their strengths and limitations. Structure-based approaches including X-ray crystallography and in silico methods of fragment optimization are discussed, as well as fragment linking guided by NMR experiments. Target-guided approaches, exploiting the biological target to assemble its own inhibitors through dynamic combinatorial chemistry (DCC) and kinetic target-guided synthesis (KTGS), are identified as alternative efficient methods for fragment linking.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Cristalografia por Raios X , Descoberta de Drogas/métodos , Ligantes , Espectroscopia de Ressonância Magnética
7.
RSC Med Chem ; 13(4): 392-404, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35647542

RESUMO

Mycobacterium abscessus (Mab) are rapidly growing mycobacteria that cause severe and persistent infections in both skin and lung tissues. Treatment regimens involve the extended usage of complex combinations of drugs, often leading to severe adverse side effects, particularly in immunocompromised patients. Current macrolide therapies are gradually proving to be less effective, largely due to emergence of antibiotic resistance; there is therefore an increasing need for the discovery of new antibacterials that are active against Mab. This review highlights recent research centred upon a number of potential therapeutic targets from Mab (Ag85C, ClpC1, GyrB, MmpL3 and TrmD), and discusses the various approaches used to discover small molecule inhibitors, in the search for future antibiotics for the treatment of Mab infections.

8.
Front Mol Biosci ; 9: 880432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712348

RESUMO

Anti-microbial resistance is a rising global healthcare concern that needs urgent attention as growing number of infections become difficult to treat with the currently available antibiotics. This is particularly true for mycobacterial infections like tuberculosis and leprosy and those with emerging opportunistic pathogens such as Mycobacterium abscessus, where multi-drug resistance leads to increased healthcare cost and mortality. M. abscessus is a highly drug-resistant non-tuberculous mycobacterium which causes life-threatening infections in people with chronic lung conditions such as cystic fibrosis. In this study, we explore M. abscessus phosphopantetheine adenylyl transferase (PPAT), an enzyme involved in the biosynthesis of Coenzyme A, as a target for the development of new antibiotics. We provide structural insights into substrate and feedback inhibitor binding modes of M. abscessus PPAT, thereby setting the basis for further chemical exploration of the enzyme. We then utilize a multi-dimensional fragment screening approach involving biophysical and structural analysis, followed by evaluation of compounds from a previous fragment-based drug discovery campaign against M. tuberculosis PPAT ortholog. This allowed the identification of an early-stage lead molecule exhibiting low micro molar affinity against M. abscessus PPAT (Kd 3.2 ± 0.8 µM) and potential new ways to design inhibitors against this enzyme. The resulting crystal structures reveal striking conformational changes and closure of solvent channel of M. abscessus PPAT hexamer providing novel strategies of inhibition. The study thus validates the ligandability of M. abscessus PPAT as an antibiotic target and identifies crucial starting points for structure-guided drug discovery against this bacterium.

9.
ACS Infect Dis ; 8(2): 296-309, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35037462

RESUMO

Mycobacterium abscessus (Mab) has emerged as a challenging threat to individuals with cystic fibrosis. Infections caused by this pathogen are often impossible to treat due to the intrinsic antibiotic resistance leading to lung malfunction and eventually death. Therefore, there is an urgent need to develop new drugs against novel targets in Mab to overcome drug resistance and subsequent treatment failure. In this study, SAICAR synthetase (PurC) from Mab was identified as a promising target for novel antibiotics. An in-house fragment library screen and a high-throughput X-ray crystallographic screen of diverse fragment libraries were explored to provide crucial starting points for fragment elaboration. A series of compounds developed from fragment growing and merging strategies, guided by crystallographic information and careful hit-to-lead optimization, have achieved potent nanomolar binding affinity against the enzyme. Some compounds also show a promising inhibitory effect against Mab and Mtb. This work utilizes a fragment-based design and demonstrates for the first time the potential to develop inhibitors against PurC from Mab.


Assuntos
Mycobacterium abscessus , Antibacterianos/química , Antibacterianos/farmacologia , Cristalografia por Raios X , Humanos , Peptídeo Sintases
10.
Eur J Med Chem ; 230: 114105, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065413

RESUMO

There is a pressing need for new drugs against tuberculosis (TB) to combat the growing resistance to current antituberculars. Herein a novel strategy is described for hit generation against promising TB targets involving X-ray crystallographic screening in combination with phenotypic screening. This combined approach (XP Screen) affords both a validation of target engagement as well as determination of in cellulo activity. The utility of this method is illustrated by way of an XP Screen against CYP121A1, a cytochrome P450 enzyme from Mycobacterium tuberculosis (Mtb) championed as a validated drug discovery target. A focused screening set was synthesized and tested by such means, with several members of the set showing promising activity against Mtb strain H37Rv. One compound was observed as an X-ray hit against CYP121A1 and showed improved activity against Mtb strain H37Rv under multiple assay conditions (pan-assay activity). Data obtained during X-ray crystallographic screening were utilized in a structure-based campaign to design a limited number of analogues (less than twenty), many of which also showed pan-assay activity against Mtb strain H37Rv. These included the benzo[b][1,4]oxazine derivative (MIC90 6.25 µM), a novel hit compound suitable as a starting point for a more involved hit to lead candidate medicinal chemistry campaign.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Desenho de Fármacos , Humanos , Tuberculose/tratamento farmacológico , Raios X
11.
J Med Chem ; 65(3): 2149-2173, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35080396

RESUMO

Pseudomonas aeruginosa is of major concern for cystic fibrosis patients where this infection can be fatal. With the emergence of drug-resistant strains, there is an urgent need to develop novel antibiotics against P. aeruginosa. MurB is a promising target for novel antibiotic development as it is involved in the cell wall biosynthesis. MurB has been shown to be essential in P. aeruginosa, and importantly, no MurB homologue exists in eukaryotic cells. A fragment-based drug discovery approach was used to target Pa MurB. This led to the identification of a number of fragments, which were shown to bind to MurB. One fragment, a phenylpyrazole scaffold, was shown by ITC to bind with an affinity of Kd = 2.88 mM (LE 0.23). Using a structure guided approach, different substitutions were synthesized and the initial fragment was optimized to obtain a small molecule with Kd = 3.57 µM (LE 0.35).


Assuntos
Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Oxirredutases/antagonistas & inibidores , Pseudomonas aeruginosa/enzimologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Fibrose Cística/complicações , Fibrose Cística/mortalidade , Fibrose Cística/patologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Oxirredutases/metabolismo , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico
12.
Comput Struct Biotechnol J ; 19: 3491-3506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194673

RESUMO

The L-arginine biosynthesis pathway consists of eight enzymes that catalyse the conversion of L-glutamate to L-arginine. Arginine auxotrophs (argB/argF deletion mutants) of Mycobacterium tuberculosis are rapidly sterilised in mice, while inhibition of ArgJ with Pranlukast was found to clear chronic M. tuberculosis infection in a mouse model. Enzymes in the arginine biosynthetic pathway have therefore emerged as promising targets for anti-tuberculosis drug discovery. In this work, the ligandability of four enzymes of the pathway ArgB, ArgC, ArgD and ArgF is assessed using a fragment-based approach. We identify several hits against these enzymes validated with biochemical and biophysical assays, as well as X-ray crystallographic data, which in the case of ArgB were further confirmed to have on-target activity against M. tuberculosis. These results demonstrate the potential for more enzymes in this pathway to be targeted with dedicated drug discovery programmes.

13.
ACS Infect Dis ; 7(6): 1666-1679, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33939919

RESUMO

Coenzyme A (CoA) is a ubiquitous cofactor present in all living cells and estimated to be required for up to 9% of intracellular enzymatic reactions. Mycobacterium tuberculosis (Mtb) relies on its own ability to biosynthesize CoA to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the pathway to CoA biosynthesis is recognized as a potential source of novel tuberculosis drug targets. In prior work, we genetically validated CoaBC as a bactericidal drug target in Mtb in vitro and in vivo. Here, we describe the identification of compound 1f, a small molecule inhibitor of the 4'-phosphopantothenoyl-l-cysteine synthetase (PPCS; CoaB) domain of the bifunctional Mtb CoaBC, and show that this compound displays on-target activity in Mtb. Compound 1f was found to inhibit CoaBC uncompetitively with respect to 4'-phosphopantothenate, the substrate for the CoaB-catalyzed reaction. Furthermore, metabolomic profiling of wild-type Mtb H37Rv following exposure to compound 1f produced a signature consistent with perturbations in pantothenate and CoA biosynthesis. As the first report of a direct small molecule inhibitor of Mtb CoaBC displaying target-selective whole-cell activity, this study confirms the druggability of CoaBC and chemically validates this target.


Assuntos
Mycobacterium tuberculosis , Peptídeo Sintases/antagonistas & inibidores , Coenzima A , Cisteína/análogos & derivados , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Ácido Pantotênico/análogos & derivados , Peptídeo Sintases/genética
14.
Cell Chem Biol ; 28(6): 835-847.e5, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33662256

RESUMO

BRCA2 controls RAD51 recombinase during homologous DNA recombination (HDR) through eight evolutionarily conserved BRC repeats, which individually engage RAD51 via the motif Phe-x-x-Ala. Using structure-guided molecular design, templated on a monomeric thermostable chimera between human RAD51 and archaeal RadA, we identify CAM833, a 529 Da orthosteric inhibitor of RAD51:BRC with a Kd of 366 nM. The quinoline of CAM833 occupies a hotspot, the Phe-binding pocket on RAD51 and the methyl of the substituted α-methylbenzyl group occupies the Ala-binding pocket. In cells, CAM833 diminishes formation of damage-induced RAD51 nuclear foci; inhibits RAD51 molecular clustering, suppressing extended RAD51 filament assembly; potentiates cytotoxicity by ionizing radiation, augmenting 4N cell-cycle arrest and apoptotic cell death and works with poly-ADP ribose polymerase (PARP)1 inhibitors to suppress growth in BRCA2-wildtype cells. Thus, chemical inhibition of the protein-protein interaction between BRCA2 and RAD51 disrupts HDR and potentiates DNA damage-induced cell death, with implications for cancer therapy.


Assuntos
Proteína BRCA2/antagonistas & inibidores , Rad51 Recombinase/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína BRCA2/química , Proteína BRCA2/metabolismo , Morte Celular/efeitos dos fármacos , Cristalografia por Raios X , Dano ao DNA , Humanos , Modelos Moleculares , Conformação Molecular , Ligação Proteica/efeitos dos fármacos , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Células Tumorais Cultivadas
15.
Nat Commun ; 12(1): 143, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420031

RESUMO

Coenzyme A (CoA) is a fundamental co-factor for all life, involved in numerous metabolic pathways and cellular processes, and its biosynthetic pathway has raised substantial interest as a drug target against multiple pathogens including Mycobacterium tuberculosis. The biosynthesis of CoA is performed in five steps, with the second and third steps being catalysed in the vast majority of prokaryotes, including M. tuberculosis, by a single bifunctional protein, CoaBC. Depletion of CoaBC was found to be bactericidal in M. tuberculosis. Here we report the first structure of a full-length CoaBC, from the model organism Mycobacterium smegmatis, describe how it is organised as a dodecamer and regulated by CoA thioesters. A high-throughput biochemical screen focusing on CoaB identified two inhibitors with different chemical scaffolds. Hit expansion led to the discovery of potent and selective inhibitors of M. tuberculosis CoaB, which we show to bind to a cryptic allosteric site within CoaB.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Carboxiliases/antagonistas & inibidores , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeo Sintases/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Carboxiliases/genética , Carboxiliases/metabolismo , Carboxiliases/ultraestrutura , Coenzima A/biossíntese , Cristalografia por Raios X , Ensaios Enzimáticos , Técnicas de Silenciamento de Genes , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptídeo Sintases/ultraestrutura , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
16.
Nucleic Acids Res ; 48(14): 8099-8112, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32602532

RESUMO

Translational frameshift errors are often deleterious to the synthesis of functional proteins and could therefore be promoted therapeutically to kill bacteria. TrmD (tRNA-(N(1)G37) methyltransferase) is an essential tRNA modification enzyme in bacteria that prevents +1 errors in the reading frame during protein translation and represents an attractive potential target for the development of new antibiotics. Here, we describe the application of a structure-guided fragment-based drug discovery approach to the design of a new class of inhibitors against TrmD in Mycobacterium abscessus. Fragment library screening, followed by structure-guided chemical elaboration of hits, led to the rapid development of drug-like molecules with potent in vitro TrmD inhibitory activity. Several of these compounds exhibit activity against planktonic M. abscessus and M. tuberculosis as well as against intracellular M. abscessus and M. leprae, indicating their potential as the basis for a novel class of broad-spectrum mycobacterial drugs.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , RNA de Transferência/metabolismo , tRNA Metiltransferases/antagonistas & inibidores , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/enzimologia , Mycobacterium leprae/efeitos dos fármacos , Mycobacterium leprae/enzimologia , Ligação Proteica , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo
17.
ACS Infect Dis ; 6(8): 2192-2201, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32603583

RESUMO

Dihydrofolate reductase (DHFR), a key enzyme involved in folate metabolism, is a widely explored target in the treatment of cancer, immune diseases, bacteria, and protozoa infections. Although several antifolates have proved successful in the treatment of infectious diseases, they have been underexplored to combat tuberculosis, despite the essentiality of M. tuberculosis DHFR (MtDHFR). Herein, we describe an integrated fragment-based drug discovery approach to target MtDHFR that has identified hits with scaffolds not yet explored in any previous drug design campaign for this enzyme. The application of a SAR by catalog strategy of an in house library for one of the identified fragments has led to a series of molecules that bind to MtDHFR with low micromolar affinities. Crystal structures of MtDHFR in complex with compounds of this series demonstrated a novel binding mode that considerably differs from other DHFR antifolates, thus opening perspectives for the development of relevant MtDHFR inhibitors.


Assuntos
Antagonistas do Ácido Fólico , Mycobacterium tuberculosis , Tuberculose , Desenho de Fármacos , Antagonistas do Ácido Fólico/farmacologia , Humanos , Tetra-Hidrofolato Desidrogenase/genética , Tuberculose/tratamento farmacológico
19.
J Med Chem ; 63(9): 4749-4761, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32240584

RESUMO

Tuberculosis (TB) remains a leading cause of mortality among infectious diseases worldwide. InhA has been the focus of numerous drug discovery efforts as this is the target of the first line pro-drug isoniazid. However, with resistance to this drug becoming more common, the aim has been to find new clinical candidates that directly inhibit this enzyme and that do not require activation by the catalase peroxidase KatG, thus circumventing the majority of the resistance mechanisms. In this work, the screening and validation of a fragment library are described, and the development of the fragment hits using a fragment growing strategy was employed, which led to the development of InhA inhibitors with affinities of up to 250 nM.


Assuntos
Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Mycobacterium tuberculosis/enzimologia , Oxirredutases/antagonistas & inibidores , Sulfonamidas/química , Antituberculosos/síntese química , Antituberculosos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Desenho de Fármacos , Ensaios Enzimáticos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxirredutases/química , Oxirredutases/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/metabolismo
20.
Bioorg Med Chem Lett ; 30(2): 126792, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31757668

RESUMO

Inosine-5'-monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme involved in nucleotide biosynthesis. Because of its critical role in purine biosynthesis, IMPDH is a drug design target for immunosuppressive, anticancer, antiviral and antimicrobial chemotherapy. In this study, we use mass spectrometry and X-ray crystallography to show that the inhibitor 6-Cl-purine ribotide forms a covalent adduct with the Cys-341 residue of Mycobacterium thermoresistibile IMPDH.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , IMP Desidrogenase/antagonistas & inibidores , Mycobacteriaceae/enzimologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , IMP Desidrogenase/metabolismo , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Nucleotídeos de Purina/síntese química , Nucleotídeos de Purina/química , Nucleotídeos de Purina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...