Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38279308

RESUMO

Ammonium and polyamines are essential nitrogen metabolites in all living organisms. Crosstalk between ammonium and polyamines through their metabolic pathways has been demonstrated in plants and animals, while no research has been directed to explore this relationship in algae or to investigate the underlying molecular mechanisms. Previous research demonstrated that high concentrations of ammonium and putrescine were among the active substances in bacteria-derived algicide targeting dinoflagellates, suggesting that the biochemical inter-connection and/or interaction of these nitrogen compounds play an essential role in controlling these ecologically important algal species. In this research, putrescine, ammonium, or a combination of putrescine and ammonium was added to cultures of three dinoflagellate species to explore their effects. The results demonstrated the dose-dependent and species-specific synergistic effects of putrescine and ammonium on these species. To further explore the molecular mechanisms behind the synergistic effects, transcriptome analysis was conducted on dinoflagellate Karlodinium veneficum treated with putrescine or ammonium vs. a combination of putrescine and ammonium. The results suggested that the synergistic effects of putrescine and ammonium disrupted polyamine homeostasis and reduced ammonium tolerance, which may have contributed to the cell death of K. veneficum. There was also transcriptomic evidence of damage to chloroplasts and impaired photosynthesis of K. veneficum. This research illustrates the molecular mechanisms underlying the synergistic effects of the major nitrogen metabolites, ammonium and putrescine, in dinoflagellates and provides direction for future studies on polyamine biology in algal species.


Assuntos
Compostos de Amônio , Dinoflagellida , Animais , Putrescina/farmacologia , Putrescina/metabolismo , Dinoflagellida/metabolismo , Compostos de Amônio/farmacologia , Poliaminas/farmacologia , Poliaminas/metabolismo , Nitrogênio/farmacologia
2.
J Environ Manage ; 351: 119872, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157579

RESUMO

Controlled release of active ingredients are important for drug delivery and more recently environmental applications including modulated dosing of chemical and biological controls. This study demonstrates the importance of investigating various material science factors that can influence the diffusion rates of alginate beads to improve and tune their performance for marine environmental applications. This investigation aimed to design a rational workflow to aid in leveraging alginate bead use as a carrier matrix for releasing a specific active agent into water. Experiments were conducted to focus on the narrow a large list of relevant material formulation parameters, which included chitosan molecular weight, chitosan concentration, calcium concentration, drop height, and bead size. Once the most relevant material preparation methods were screened, a more robust statistic Design of Experiments approach was performed and results determined the important (and unimportant) factors for increasing dye release kinetics in marine water. The process was further streamlined by narrowing the critical experimental factors to a three-level based on the prior analysis: chitosan MW, chitosan concentration, and bead size. Analysis of the collected data indicated that while chitosan MW had a negligible impact (Fstatistic = 0.22), bead size (Fstatistic = 60.33) significantly influenced the diffusion rates based on surface area. However, chitosan MW had minor effects where lower chitosan MW enabled higher product release rates. This case investigation was a novel application of the design of experiment approach towards environmental applications to understand differences in release rates to marine waters for the first time and the workflow provided also serve as the basis for researchers to optimize other environmental applications requiring optimization when it is unknown how a large number of formulation variables will impact performance in different environmental scenarios.


Assuntos
Quitosana , Quitosana/química , Alginatos/química , Cálcio , Água , Ácidos Hexurônicos/química , Ácido Glucurônico/química
3.
Front Microbiol ; 14: 1059074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937302

RESUMO

Nitrate reductase (NR) catalyzes the rate-limiting step in nitrate assimilation. Plant and algal NRs have a highly conserved domain architecture but differ in regulation. In plants, NR activity is regulated by reversible phosphorylation and subsequent binding of 14-3-3 proteins at a conserved serine residue. Algal NRs typically lack 14-3-3 binding motifs, which have only recently been identified in a few algal species. Previous research indicates that the alga, Chattonella subsalsa, possesses a novel NR, NR2-2/2HbN (NR2), which incorporates a 2/2 hemoglobin domain. A second NR (NR3) in C. subsalsa lacks the cytochrome b5 (heme-Fe) domain but includes a putative binding motif for 14-3-3 proteins. The expression of NR2 and NR3 genes indicates that NR2 transcript abundance was regulated by light, nitrogen source, and temperature, while NR3 transcript levels were only regulated by light. Here, we measured total NR activity in C. subsalsa and the potential for regulation of NR activity by putative 14-3-3 binding proteins. Results indicate that NR activity in C. subsalsa was regulated by light, nitrogen source, and temperature at the translational level. NR activity was also regulated by endogenous rhythm and temperature at the post-translational level, supporting the hypothesis that NR3 is regulated by 14-3-3 binding proteins. Together with a previous report describing the regulation of NR gene expression in C. subsalsa, results suggest that C. subsalsa responds to environmental conditions by differential regulation of NRs at transcriptional, translational, and post-translational levels. This flexibility may provide a competitive advantage for this species in the environment. To date, this is the first report which provides evidence for the potential post-translational regulation of NR by 14-3-3 proteins in algal species and suggests that regulatory mechanisms for NR activity may be shared between plants and some algal species.

4.
Sci Rep ; 13(1): 621, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635297

RESUMO

The harmful alga Heterosigma akashiwo possesses a hybrid nitrate reductase (NR) enzyme, NR2-2/2HbN, which has the potential to convert NO to nitrate for assimilation into biomass. In previous research, NR transcription in H. akashiwo was induced by nitrate while NR activity was inhibited by ammonium. Here, the capacity of H. akashiwo to use NO in the presence of nitrate and/or ammonium was investigated to understand the regulation of NO assimilation. Continuous cultures of H. akashiwo were acclimated to growth on nitrate, ammonium, or a mixture of both. Aliquots from these cultures were spiked with 15N-labeled NO. The expression of genes involved in nitrogen assimilation was evaluated, as well as nitrate reductase activity and assimilation of 15N-labeled nitrogen into algal biomass. Results showed that NO induced expression and activity of NR, and upregulated expression of GOGAT regardless of the presence of other inorganic nitrogen sources, while GS expression decreased over time. Furthermore, 15NO uptake and assimilation was significantly higher in cultures acclimated for growth on ammonium compared to cultures acclimated for growth on nitrate alone. Assimilation of NO may provide H. akashiwo with a competitive advantage in N-poor environments or areas with elevated NO.


Assuntos
Compostos de Amônio , Dinoflagellida , Nitratos/farmacologia , Nitratos/metabolismo , Óxido Nítrico , Compostos de Amônio/farmacologia , Nitrato Redutase/metabolismo , Dinoflagellida/metabolismo , Nitrogênio/metabolismo
5.
Front Microbiol ; 13: 871177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464927

RESUMO

Interactions between bacteria and phytoplankton in aqueous ecosystems are both complex and dynamic, with associations that range from mutualism to parasitism. This review focuses on algicidal interactions, in which bacteria are capable of controlling algal growth through physical association or the production of algicidal compounds. While there is some evidence for bacterial control of algal growth in the field, our understanding of these interactions is largely based on laboratory culture experiments. Here, the range of these algicidal interactions is discussed, including specificity of bacterial control, mechanisms for activity, and insights into the chemical and biochemical analysis of these interactions. The development of algicidal bacteria or compounds derived from bacteria for control of harmful algal blooms is reviewed with a focus on environmentally friendly or sustainable methods of application. Potential avenues for future research and further development and application of bacterial algicides for the control of algal blooms are presented.

6.
Metabolites ; 12(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35448504

RESUMO

Shewanella sp. IRI-160 is an algicidal bacterium that secretes an algicide, IRI-160AA. This algicide specifically targets dinoflagellates, while having no adverse effects on other algal species tested. Dinoflagellates exposed to IRI-160AA exhibited increased production of reactive oxygen species (ROS), DNA damage, and cell cycle arrest, implying a programmed pathway leading to cell death (PCD). Here, a metabolomic analysis was conducted on dinoflagellate Karlodinium veneficum and a control cryptophyte species Rhodomonas exposed to IRI-160AA to investigate the cellular mechanisms behind the physiological effects and the specificity of this algicide. Results of this research supported previous observations about physiological responses to the algicide. A suite of metabolites was identified that increased in the cell pellets of K. veneficum but not in Rhodomonas, including oxidative stress biomarkers, antioxidants, and compounds involved in DNA damage and PCD. Overall, the results of this study illustrated the metabolomic mechanisms underlying the algicidal effects of IRI-160AA on dinoflagellates. This research also provided insights and future directions for studies on the cellular response of dinoflagellates exposed to antagonistic bacteria in the environment.

7.
Harmful Algae ; 111: 102168, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35016772

RESUMO

In laboratory culture, the toxic dinoflagellate Dinophysis acuminata acquires plastids from the ciliate, Mesodinium rubrum, which, in turn, acquires plastids from the cryptophyte, Teleaulax amphioxeia. Reports of D. acuminata from field samples found plastids of the raphidophyte, Heterosigma akashiwo within D. acuminata cells, suggesting a broader range of prey. Dinophysis blooms often co-occur with H. akashiwo in Delaware's inland bays. In the study presented here, predation on H. akashiwo by D. acuminata was investigated. Growth rates of D. acuminata were measured when cultured with H. akashiwo either alone or with its known prey, M. rubrum. M. rubrum was also cultured with H. akashiwo to examine predation by the ciliate as a vector for Heterosigma plastids. Ingestion rates by D. acuminata were measured when presented with H. akashiwo as prey, and retention of plastids from H. akashiwo was investigated by measuring chlorophyll a fluorescence intensities in D. acuminata cells presented with H. akashiwo as prey compared to M. rubrum. Additionally, a fluorescence-based method was developed to identify the presence of the accessory pigment fucoxanthin from H. akashiwo plastids in cells of D. acuminata. Results showed that the growth rate of D. acuminata was significantly lower when offered H. akashiwo as prey compared the growth rate when offered M. rubrum as prey. Likewise, no predation was observed when D. acuminata was offered H. akashiwo as prey. Intensity of chlorophyll a fluorescence was lower when H. akashiwo was offered as prey compared to M. rubrum, and fucoxanthin was not detected in any of the Dinophysis cells examined after incubation with H. akashiwo. Results of this investigation do not support the hypothesis that D. acuminata preys on H. akashiwo and highlight the need for further research on factors that stimulate the growth of Dinophysis in field populations.


Assuntos
Cilióforos , Dinoflagellida , Clorofila A , Cloroplastos , Criptófitas
8.
PLoS One ; 16(10): e0259161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34705875

RESUMO

There is little information on the impacts of climate change on resource partitioning for mixotrophic phytoplankton. Here, we investigated the hypothesis that light interacts with temperature and CO2 to affect changes in growth and cellular carbon and nitrogen content of the mixotrophic dinoflagellate, Karlodinium veneficum, with increasing cellular carbon and nitrogen content under low light conditions and increased growth under high light conditions. Using a multifactorial design, the interactive effects of light, temperature and CO2 were investigated on K. veneficum at ambient temperature and CO2 levels (25°C, 375 ppm), high temperature (30°C, 375 ppm CO2), high CO2 (30°C, 750 ppm CO2), or a combination of both high temperature and CO2 (30°C, 750 ppm CO2) at low light intensities (LL: 70 µmol photons m-2 s-2) and light-saturated conditions (HL: 140 µmol photons m-2 s-2). Results revealed significant interactions between light and temperature for all parameters. Growth rates were not significantly different among LL treatments, but increased significantly with temperature or a combination of elevated temperature and CO2 under HL compared to ambient conditions. Particulate carbon and nitrogen content increased in response to temperature or a combination of elevated temperature and CO2 under LL conditions, but significantly decreased in HL cultures exposed to elevated temperature and/or CO2 compared to ambient conditions at HL. Significant increases in C:N ratios were observed only in the combined treatment under LL, suggesting a synergistic effect of temperature and CO2 on carbon assimilation, while increases in C:N under HL were driven only by an increase in CO2. Results indicate light-driven variations in growth and nutrient acquisition strategies for K. veneficum that may benefit this species under anticipated climate change conditions (elevated light, temperature and pCO2) while also affecting trophic transfer efficiency during blooms of this species.


Assuntos
Biomassa , Dinoflagellida/metabolismo , Eutrofização , Dióxido de Carbono/metabolismo , Dinoflagellida/crescimento & desenvolvimento , Temperatura Alta , Nitrogênio/metabolismo , Luz Solar
9.
Sci Rep ; 11(1): 583, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436753

RESUMO

Harmful algal blooms (HABs) affect both freshwater and marine systems. Laboratory experiments suggest an exudate produced by the bacterium Shewanella sp. IRI-160 could be used to prevent or mitigate dinoflagellate blooms; however, effects on non-target organisms are unknown. The algicide (IRI-160AA) was tested on various ontogenetic stages of the copepod Acartia tonsa (nauplii and adult copepodites), the blue crab Callinectes sapidus (zoea larvae and megalopa postlarvae), and the eastern oyster Crassostrea virginica (pediveliger larvae and adults). Mortality experiments with A. tonsa revealed that the 24-h LC50 was 13.4% v/v algicide for adult females and 5.96% for early-stage nauplii. For C. sapidus, the 24-h LC50 for first-stage zoeae was 16.8%; results were not significant for megalopae or oysters. Respiration rates for copepod nauplii increased in the 11% concentration, and in the 11% and 17% concentrations for crab zoeae; rates of later stages and oysters were unaffected. Activity level was affected for crab zoeae in the 1%, 11%, and 17% treatments, and for oyster pediveliger larvae at the 17% level. Activity of later stages and of adult copepods was unaffected. Smaller, non-target biota with higher surface to volume could be negatively impacted from IRI-160AA dosing, but overall the taxa and stages assayed were tolerant to the algicide at concentrations required for dinoflagellate mortality (EC50 = ~ 1%).


Assuntos
Dinoflagellida/efeitos dos fármacos , Proliferação Nociva de Algas/efeitos dos fármacos , Herbicidas/farmacologia , Invertebrados/efeitos dos fármacos , Animais , Braquiúros/efeitos dos fármacos , Copépodes/efeitos dos fármacos , Crassostrea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Masculino
10.
Harmful Algae ; 94: 101798, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32414500

RESUMO

Shewanella sp. IRI-160 is an algicidal bacterium isolated from Delaware Inland Bays. It secretes water-soluble compounds that inhibit the growth of dinoflagellates. Previous research indicated that this bacterium does not have a negative impact on other algal species. In this research, Shewanella sp. IRI-160 was immobilized to different porous matrices, including agarose, alginate hydrogel, cellulosic sponge, and polyester foam. The retention of Shewanella sp. IRI-160 on or within these matrices was examined at 4 and 25 °C for 12 days. Results indicated that alginate was superior in terms of cell retention, with >99% of Shewanella cells retained in the matrix after 12 days. Shewanella sp. IRI-160 cells were then immobilized within alginate beads to evaluate algicidal effects on harmful dinoflagellates Karlodinium veneficum and Prorocentrum minimum at bacterial concentrations of 106 to 108 cells mL-1. The effects on dinoflagellates were compared to non-harmful cryptophyte Rhodomonas sp., as well as the effects of free-living bacteria on these species. Results indicated that immobilized Shewanella sp. IRI-160 in alginate beads were as effective as the free-living bacteria to control the growth of K. veneficum and P. minimum, while no negative impacts of immobilized Shewanella sp. IRI-160 on the non-harmful control species Rhodomonas sp. were observed. Overall, this study suggests that immobilized Shewanella sp. IRI-160 may be used as an environmentally friendly approach to prevent or mitigate the blooms of harmful dinoflagellates and provides insight and directions for future studies.


Assuntos
Dinoflagellida , Shewanella
11.
Harmful Algae ; 94: 101804, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32414505

RESUMO

Characterizing the thermal niche of harmful algae is crucial for understanding and projecting the effects of future climate change on harmful algal blooms. The effects of 6 different temperatures (18-32 °C) on the growth, photophysiology, and toxicity were examined in the dinoflagellate Karlodinium veneficum, and the raphidophytes, Heterosigma akashiwo and Chattonella subsalsa from the Delaware Inland Bays (DIB). K. veneficum and H. akashiwo had skewed unimodal growth patterns, with temperature optima (Topt) at 28.6 and 27.3 °C respectively and an upper thermal niche limit of 32 °C. In contrast, C. subsalsa growth increased linearly with temperature, suggesting Topt and upper thermal boundaries >32 °C. K. veneficum photosystem II (PSII) photochemical efficiency remained stable across all temperatures, while H. akashiwo PSII efficiency declined at higher temperature and C. subsalsa was susceptible to low temperature (~18 °C) photoinactivation. Cell toxicity thermal response was species-specific such that K. veneficum toxicity increased with temperature above Topt. Raphidophyte toxicity peaked at 25-28 °C and was in close agreement with Topt for growth in H. akashiwo but below C. subsalsa maximal growth. The mode of toxicity was markedly different between the dinoflagellate and the raphidophytes such that K. veneficum had greater hemolytic activity while the raphidophytes had pronounced fish gill cell toxicity. These results and patterns of natural abundance for these algae in the DIB suggest that continued ocean warming may contribute to C. subsalsa bloom formation while possibly promoting highly toxic blooms of K. veneficum.


Assuntos
Dinoflagellida , Estramenópilas , Aclimatação , Animais , Proliferação Nociva de Algas , Complexo de Proteína do Fotossistema II
12.
FEMS Microbiol Ecol ; 96(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31967635

RESUMO

The McMurdo Dry Valleys (MDV) in Antarctica harbor a diverse assemblage of mat-forming diazotrophic cyanobacteria that play a key role in nitrogen cycling. Prior research showed that heterotrophic diazotrophs also make a substantial contribution to nitrogen fixation in MDV. The goals of this study were to survey autotrophic and heterotrophic diazotrophs across the MDV to investigate factors that regulate the distribution and relative ecological roles of each group. Results indicated that diazotrophs were present only in samples with mats, suggesting a metabolic coupling between autotrophic and heterotrophic diazotrophs. Analysis of 16S rRNA and nifH gene sequences also showed that diazotrophs were significantly correlated to the broader bacterial community, while co-occurrence network analysis revealed potential interspecific interactions. Consistent with previous studies, heterotrophic diazotrophs in MDV were diverse, but largely limited to lakes and their outlet streams, or other environments protected from desiccation. Despite the limited distribution, heterotrophic diazotrophs may make a substantial contribution to the nitrogen budget of MDV due to larger surface area and longer residence times of lakes. This work contributes to our understanding of key drivers of bacterial community structure in polar deserts and informs future efforts to investigate the contribution of nitrogen fixation to MDV ecosystems.


Assuntos
Ecossistema , Processos Heterotróficos , Regiões Antárticas , Processos Autotróficos , Fixação de Nitrogênio , RNA Ribossômico 16S/genética
13.
Front Microbiol ; 10: 621, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019494

RESUMO

The cold deserts of the McMurdo Dry Valleys (MDV), Antarctica, host a high level of microbial diversity. Microbial composition and biomass in arid vs. ephemerally wetted regions are distinctly different, with wetted communities representing hot spots of microbial activity that are important zones for biogeochemical cycling. While climatic change is likely to cause wetting in areas not historically subject to wetting events, the responses of microorganisms inhabiting arid soils to water addition is unknown. The purpose of this study was to observe how an associated, yet non-wetted microbial community responds to an extended addition of water. Water from a stream was diverted to an adjacent area of arid soil with changes in microbial composition and activities monitored via molecular and biochemical methods over 7 weeks. The frequency of genetic signatures related to both prokaryotic and eukaryotic organisms adapted to MDV aquatic conditions increased during the limited 7 week period, indicating that the soil community was transitioning into a typical "high-productivity" MDV community. This work is consistent with current predictions that MDV microbial communities in arid regions are highly sensitive to climate change, and further supports the notion that changes in community structure and associated biogeochemical cycling may occur much more rapidly than predicted.

14.
J Eukaryot Microbiol ; 66(4): 637-653, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30620427

RESUMO

Microbial eukaryotes have important roles in marine food webs, but their diversity and activities in hydrothermal vent ecosystems are poorly characterized. In this study, we analyzed microbial eukaryotic communities associated with bacterial (Beggiatoa) mats in the 2,000 m deep-sea Guaymas Basin hydrothermal vent system using 18S rRNA gene high-throughput sequencing of the V4 region. We detected 6,954 distinct Operational Taxonomic Units (OTUs) across various mat systems. Of the sequences that aligned with known protistan phylotypes, most were affiliated with alveolates (especially dinoflagellates and ciliates) and cercozoans. OTU richness and community structure differed among sediment habitats (e.g. different mat types and cold sediments away from mats). Additionally, full-length 18S rRNA genes amplified and cloned from single cells revealed the identities of some of the most commonly encountered, active ciliates in this hydrothermal vent ecosystem. Observations and experiments were also conducted to demonstrate that ciliates were trophically active and ingesting fluorescent bacteria or Beggiatoa trichomes. Our work suggests that the active and diverse protistan community at the Guaymas Basin hydrothermal vent ecosystem likely consumes substantial amounts of bacterial biomass, and that the different habitats, often defined by distances of just a few 10s of cm, select for particular assemblages and levels of diversity.


Assuntos
Alveolados/isolamento & purificação , Cercozoários/isolamento & purificação , Fontes Hidrotermais/microbiologia , Microbiota , Água do Mar/microbiologia , Alveolados/genética , Beggiatoa/fisiologia , Cercozoários/genética , México , RNA de Protozoário/análise , RNA Ribossômico 18S/análise
15.
Sci Rep ; 8(1): 13417, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194416

RESUMO

Eukaryotic nitrate reductase (NR) catalyzes the first step in nitrate assimilation and is regulated transcriptionally in response to external cues and intracellular metabolic status. NRs are also regulated post-translationally in plants by phosphorylation and binding of 14-3-3 proteins at conserved serine residues. 14-3-3 binding motifs have not previously been identified in algal NRs. A novel NR (NR2-2/2HbN) with a 2/2 hemoglobin domain was recently described in the alga Chattonella subsalsa. Here, a second NR (NR3) in C. subsalsa is described with a 14-3-3 binding motif but lacking the Heme-Fe domain found in other NRs. Transcriptional regulation of both NRs was examined in C. subsalsa, revealing differential gene expression over a diel light cycle, but not under constant light. NR2 transcripts increased with a decrease in temperature, while NR3 remained unchanged. NR2 and NR3 transcript levels were not inhibited by growth on ammonium, suggesting constitutive expression of these genes. Results indicate that Chattonella responds to environmental conditions and intracellular metabolic status by differentially regulating NR transcription, with potential for post-translational regulation of NR3. A survey of algal NRs also revealed the presence of 14-3-3 binding motifs in other algal species, indicating the need for future research on regulation of algal NRs.


Assuntos
Nitrato Redutase/genética , Proteínas de Plantas/genética , Rodófitas/genética , Proteínas 14-3-3/metabolismo , Sítios de Ligação , Heme/metabolismo , Nitrato Redutase/química , Nitrato Redutase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Rodófitas/enzimologia
16.
Molecules ; 24(1)2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30602708

RESUMO

Due to increasing evidence of key chemically mediated interactions in marine ecosystems, a real interest in the characterization of the metabolites involved in such intra and interspecific interactions has emerged over the past decade. Nevertheless, only a small number of studies have succeeded in identifying the chemical structure of compounds of interest. One reason for this low success rate is the small size and extremely polar features of many of these chemical compounds. Indeed, a major challenge in the search for active metabolites is the extraction of small polar compounds from seawater. Yet, a full characterization of those metabolites is necessary to understand the interactions they mediate. In this context, the study presented here aims to provide a methodology for the characterization of highly polar, low molecular weight compounds in a seawater matrix that could provide guidance for marine ecologists in their efforts to identify active metabolites. This methodology was applied to the investigation of the chemical structure of an algicidal compound secreted by the bacteria Shewanella sp. IRI-160 that was previously shown to induce programmed cell death in dinoflagellates. The results suggest that the algicidal effects may be attributed to synergistic effects of small amines (ammonium, 4-aminobutanal) derived from the catabolization of putrescine produced in large quantities (0.05⁻6.5 fmol/cell) by Shewanella sp. IRI- 160.


Assuntos
Dinoflagellida/efeitos dos fármacos , Herbicidas/farmacologia , Poliaminas/farmacologia , Shewanella/química , Aldeídos/farmacologia , Compostos de Amônio/farmacologia , Sinergismo Farmacológico , Herbicidas/química , Estrutura Molecular , Peso Molecular , Poliaminas/química , Putrescina/química , Água do Mar/microbiologia , Microbiologia da Água
17.
Sci Rep ; 7: 45102, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28332589

RESUMO

Bacteria may play a role in regulating harmful algal blooms, but little is known about the biochemical and physiological changes associated with cell death induced by algicidal bacteria. Previous work characterized an algicidal exudate (IRI-160AA) produced by Shewanella sp. IRI-160 that is effective against dinoflagellates, while having little to no effect on other phytoplankton species in laboratory culture experiments. The objective of this study was to evaluate biochemical changes associated with cell death and impacts on the cell cycle in three dinoflagellate species (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum) after exposure to IRI-160AA. In this study, IRI-160AA induced cell cycle arrest in all dinoflagellates examined. Several indicators for programmed cell death (PCD) that are often observed in phytoplankton in response to a variety of stressors were also evaluated. Cell death was accompanied by significant increases in DNA degradation, intra- and extracellular ROS concentrations and DEVDase (caspase-3 like) protease activity, which have been associated with PCD in other phytoplankton species. Overall, results of this investigation provide strong evidence that treatment with the bacterial algicide, IRI-160AA results in cell cycle arrest and induces biochemical changes consistent with stress-related cell death responses observed in other phytoplankton.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Dinoflagellida/efeitos dos fármacos , Dinoflagellida/fisiologia , Herbicidas/farmacologia , Contagem de Células , Clivagem do DNA , Peróxido de Hidrogênio/metabolismo , Peptídeo Hidrolases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Harmful Algae ; 62: 127-135, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28118887

RESUMO

The algicide, IRI-160AA, induces mortality in dinoflagellates but not other species of algae, suggesting that a shared characteristic or feature renders this class of phytoplankton vulnerable to the algicide. In contrast to other eukaryotic species, the genome of dinoflagellates is stabilized by high concentrations of divalent cations and transition metals and contains large amounts of DNA with unusual base modifications. These distinctions set dinoflagellates apart from other phytoplankton and suggest that the nucleus may be a dinoflagellate-specific target for IRI-160AA. In this study, morphological and ultrastructural changes in three dinoflagellate species, Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum, were evaluated after short-term exposure to IRI-160AA using super resolution structured illumination microscopy (SR-SIM) and transmission electron microscopy (TEM). Exposure to the algicide resulted in cytoplasmic membrane blebbing, differing chloroplast morphologies, nuclear expansion, and chromosome expulsion and/or destabilization. TEM analysis showed that chromosomes of algicide-treated K. veneficum appeared electron dense with fibrous protrusions. In algicide-treated P. minimum and G. instriatum, chromosome decompaction occurred, while for P. minimum, nuclear expulsion was also observed for several cells. Results of this investigation demonstrate that exposure to the algicide destabilizes dinoflagellate chromosomes, although it was not clear if the nucleus was the primary target of the algicide or if the observed effects on chromosomal structure were due to downstream impacts. In all cases, changes in cellular morphology and ultrastructure were observed within two hours, suggesting that the algicide may be an effective and rapid approach to mitigate dinoflagellate blooms.


Assuntos
Núcleo Celular/efeitos dos fármacos , Dinoflagellida/efeitos dos fármacos , Herbicidas/farmacologia , Fitoplâncton/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Dinoflagellida/ultraestrutura , Microscopia Eletrônica de Transmissão , Fitoplâncton/ultraestrutura , Especificidade da Espécie
19.
Bioresour Technol ; 219: 246-251, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27494106

RESUMO

As a potential biofuel feedstock, the marine microalga, Heterosigma akashiwo, accumulates significant lipids, is capable of long-term growth in outdoor photobioreactors, and is an excellent candidate for the bioremediation of industrial emissions. Here, we evaluated resource partitioning in H. akashiwo growing on a CO2 and NO gas mixture under three light intensities: 160, 560, or 1200µmolquantam(-2)s(-1). Light levels had no effect on growth; however, cultures in high light accumulated 2.3-fold more carbohydrates and 17% fewer lipids. Light levels did not affect the percentage of saturated fatty acids, but mono-unsaturates increased by 6% and poly-unsaturates decreased by 12% in high light. The fatty acid profiles reported here suggest that H. akashiwo is a good candidate for the production of neutral lipids for biodiesel and also omega-3 fatty acids, and that the quality of biodiesel acquired from feedstocks grown under fluctuating light conditions would be relatively stable.


Assuntos
Biocombustíveis , Microalgas/crescimento & desenvolvimento , Fotobiorreatores/microbiologia , Gerenciamento de Resíduos/métodos , Biomassa , Dióxido de Carbono/química , Resíduos Industriais , Luz , Lipídeos/biossíntese , Microalgas/metabolismo , Óxido Nítrico/química
20.
Appl Environ Microbiol ; 81(17): 5703-13, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26070682

RESUMO

Vibrio species are an abundant and diverse group of bacteria that form associations with phytoplankton. Correlations between Vibrio and phytoplankton abundance have been noted, suggesting that growth is enhanced during algal blooms or that association with phytoplankton provides a refuge from predation. Here, we investigated relationships between particle-associated Vibrio spp. and phytoplankton in Delaware's inland bays (DIB). The relative abundances of particle-associated Vibrio spp. and algal classes that form blooms in DIB (dinoflagellates, diatoms, and raphidophytes) were determined using quantitative PCR. The results demonstrated a significant correlation between particle-associated Vibrio abundance and phytoplankton, with higher correlations to diatoms and raphidophytes than to dinoflagellates. Species-specific associations were examined during a mixed bloom of Heterosigma akashiwo and Fibrocapsa japonica (Raphidophyceae) and indicated a significant positive correlation for particle-associated Vibrio abundance with H. akashiwo but a negative correlation with F. japonica. Changes in Vibrio assemblages during the bloom were evaluated using automated ribosomal intergenic spacer analysis (ARISA), which revealed significant differences between each size fraction but no significant change in Vibrio assemblages over the course of the bloom. Microzooplankton grazing experiments showed that losses of particle-associated Vibrio spp. may be offset by increased growth in the Vibrio population. Moreover, analysis of Vibrio assemblages by ARISA also indicated an increase in the relative abundance for specific members of the Vibrio community despite higher grazing pressure on the particle-associated population as a whole. The results of this investigation demonstrate links between phytoplankton and Vibrio that may lead to predictions of potential health risks and inform future management practices in this region.


Assuntos
Diatomáceas/microbiologia , Dinoflagellida/microbiologia , Ecossistema , Fitoplâncton/microbiologia , Estramenópilas/microbiologia , Vibrio/isolamento & purificação , Baías , Delaware , Diatomáceas/fisiologia , Dinoflagellida/fisiologia , Dados de Sequência Molecular , Fitoplâncton/classificação , Fitoplâncton/fisiologia , Especificidade da Espécie , Estramenópilas/fisiologia , Vibrio/classificação , Vibrio/genética , Vibrio/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...