Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 598(2): 242-251, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37904282

RESUMO

Human somatic angiotensin-1-converting enzyme (sACE) is composed of a catalytic N-(nACE) and C-domain (cACE) of similar size with different substrate specificities. It is involved in the regulation of blood pressure by converting angiotensin I to the vasoconstrictor angiotensin II and has been a major focus in the development of therapeutics for hypertension. Bioactive peptides from various sources, including milk, have been identified as natural ACE inhibitors. We report the structural basis for the role of two lacototripeptides, Val-Pro-Pro and Ile-Pro-Pro, in domain-specific inhibition of ACE using X-ray crystallography and kinetic analysis. The lactotripeptides have preference for nACE due to altered polar interactions distal to the catalytic zinc ion. Elucidating the mechanism of binding and domain selectivity of these peptides also provides important insights into the functional roles of ACE.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Peptidil Dipeptidase A , Humanos , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Cinética , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Angiotensinas
2.
Anal Chem ; 95(37): 13829-13837, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37642957

RESUMO

Synthetic cannabinoids (SCs) make up a class of novel psychoactive substances (NPS), used predominantly in prisons and homeless communities in the U.K. SCs can have severe side effects, including psychosis, stroke, and seizures, with numerous reported deaths associated with their use. The chemical diversity of SCs presents the major challenge to their detection since approaches relying on specific molecular recognition become outdated almost immediately. Ideally one would have a generic approach to detecting SCs in portable settings. The problem of SC detection is more challenging still because the majority of SCs enter the prison estate adsorbed onto physical matrices such as paper, fabric, or herb materials. That is, regardless of the detection modality used, the necessary extraction step reduces the effectiveness and ability to rapidly screen materials on-site. Herein, we demonstrate a truly instant generic test for SCs, tested against real-world drug seizures. The test is based on two advances. First, we identify a spectrally silent region in the emission spectrum of most physical matrices. Second, the finding that background signals (including from autofluorescence) can be accurately predicted is based on tracking the fraction of absorbed light from the irradiation source. Finally, we demonstrate that the intrinsic fluorescence of a large range of physical substrates can be leveraged to track the presence of other drugs of interest, including the most recent iterations of benzodiazepines and opioids. We demonstrate the implementation of our presumptive test in a portable, pocket-sized device that will find immediate utility in prisons and law enforcement agencies around the world.


Assuntos
Analgésicos Opioides , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Benzodiazepinas , Fluorescência , Convulsões
3.
Sci Signal ; 16(789): eadd3184, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311034

RESUMO

The activation of at least 23 different mammalian kinases requires the phosphorylation of their hydrophobic motifs by the kinase PDK1. A linker connects the phosphoinositide-binding PH domain to the catalytic domain, which contains a docking site for substrates called the PIF pocket. Here, we used a chemical biology approach to show that PDK1 existed in equilibrium between at least three distinct conformations with differing substrate specificities. The inositol polyphosphate derivative HYG8 bound to the PH domain and disrupted PDK1 dimerization by stabilizing a monomeric conformation in which the PH domain associated with the catalytic domain and the PIF pocket was accessible. In the absence of lipids, HYG8 potently inhibited the phosphorylation of Akt (also termed PKB) but did not affect the intrinsic activity of PDK1 or the phosphorylation of SGK, which requires docking to the PIF pocket. In contrast, the small-molecule valsartan bound to the PIF pocket and stabilized a second distinct monomeric conformation. Our study reveals dynamic conformations of full-length PDK1 in which the location of the linker and the PH domain relative to the catalytic domain determines the selective phosphorylation of PDK1 substrates. The study further suggests new approaches for the design of drugs to selectively modulate signaling downstream of PDK1.


Assuntos
Mamíferos , Polifosfatos , Animais , Especificidade por Substrato , Fosforilação , Domínio Catalítico , Dimerização
4.
Anal Chem ; 95(2): 703-713, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36599091

RESUMO

With synthetic cannabinoid receptor agonist (SCRA) use still prevalent across Europe and structurally advanced generations emerging, it is imperative that drug detection methods advance in parallel. SCRAs are a chemically diverse and evolving group, which makes rapid detection challenging. We have previously shown that fluorescence spectral fingerprinting (FSF) has the potential to provide rapid assessment of SCRA presence directly from street material with minimal processing and in saliva. Enhancing the sensitivity and discriminatory ability of this approach has high potential to accelerate the delivery of a point-of-care technology that can be used confidently by a range of stakeholders, from medical to prison staff. We demonstrate that a range of structurally distinct SCRAs are photochemically active and give rise to distinct FSFs after irradiation. To explore this in detail, we have synthesized a model series of compounds which mimic specific structural features of AM-694. Our data show that FSFs are sensitive to chemically conservative changes, with evidence that this relates to shifts in the electronic structure and cross-conjugation. Crucially, we find that the photochemical degradation rate is sensitive to individual structures and gives rise to a specific major product, the mechanism and identification of which we elucidate through density-functional theory (DFT) and time-dependent DFT. We test the potential of our hybrid "photochemical fingerprinting" approach to discriminate SCRAs by demonstrating SCRA detection from a simulated smoking apparatus in saliva. Our study shows the potential of tracking photochemical reactivity via FSFs for enhanced discrimination of SCRAs, with successful integration into a portable device.


Assuntos
Agonistas de Receptores de Canabinoides , Drogas Ilícitas , Humanos , Agonistas de Receptores de Canabinoides/química , Sistemas Automatizados de Assistência Junto ao Leito , Detecção do Abuso de Substâncias/métodos
5.
FEBS J ; 289(21): 6659-6671, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35653492

RESUMO

Human angiotensin I-converting enzyme (ACE) has two isoforms, somatic ACE (sACE) and testis ACE (tACE). The functions of sACE are widespread, with its involvement in blood pressure regulation most extensively studied. sACE is composed of an N-domain (nACE) and a C-domain (cACE), both catalytically active but have significant structural differences, resulting in different substrate specificities. Even though ACE inhibitors are used clinically, they need much improvement because of serious side effects seen in patients (~ 25-30%) with long-term treatment due to nonselective inhibition of nACE and cACE. Investigation into the distinguishing structural features of each domain is therefore of vital importance for the development of domain-specific inhibitors with minimal side effects. Here, we report kinetic data and high-resolution crystal structures of both nACE (1.75 Å) and cACE (1.85 Å) in complex with fosinoprilat, a clinically used inhibitor. These structures allowed detailed analysis of the molecular features conferring domain selectivity by fosinoprilat. Particularly, altered hydrophobic interactions were observed to be a contributing factor. These experimental data contribute to improved understanding of the structural features that dictate ACE inhibitor domain selectivity, allowing further progress towards designing novel 2nd-generation domain-specific potent ACE inhibitors suitable for clinical administration, with a variety of potential future therapeutic benefits. DATABASE: The atomic coordinates and structure factors for nACE-fosinoprilat and cACE-fosinoprilat structures have been deposited with codes 7Z6Z and 7Z70, respectively, in the RCSB Protein Data Bank, www.pdb.org.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Peptidil Dipeptidase A , Humanos , Peptidil Dipeptidase A/química , Cristalografia por Raios X , Inibidores da Enzima Conversora de Angiotensina/química , Angiotensinas
6.
J Med Chem ; 65(4): 3371-3387, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35113565

RESUMO

Selective inhibition of the angiotensin-converting enzyme C-domain (cACE) and neprilysin (NEP), leaving the ACE N-domain (nACE) free to degrade bradykinin and other peptides, has the potential to provide the potent antihypertensive and cardioprotective benefits observed for nonselective dual ACE/NEP inhibitors, such as omapatrilat, without the increased risk of adverse effects. We have synthesized three 1-carboxy-3-phenylpropyl dipeptide inhibitors with nanomolar potency based on the previously reported C-domain selective ACE inhibitor lisinopril-tryptophan (LisW) to probe the structural requirements for potent dual cACE/NEP inhibition. Here we report the synthesis, enzyme kinetic data, and high-resolution crystal structures of these inhibitors bound to nACE and cACE, providing valuable insight into the factors driving potency and selectivity. Overall, these results highlight the importance of the interplay between the S1' and S2' subsites for ACE domain selectivity, providing guidance for future chemistry efforts toward the development of dual cACE/NEP inhibitors.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Neprilisina/farmacologia , Peptidil Dipeptidase A/efeitos dos fármacos , Inibidores da Enzima Conversora de Angiotensina/síntese química , Sítios de Ligação/efeitos dos fármacos , Bradicinina/metabolismo , Simulação por Computador , Cristalografia por Raios X , Humanos , Cinética , Lisinopril/farmacologia , Peptidil Dipeptidase A/química , Piridinas/farmacologia , Tiazepinas/farmacologia
7.
FEBS J ; 288(7): 2238-2256, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33067882

RESUMO

Angiotensin-1-converting enzyme (ACE) is a key enzyme in the renin-angiotensin-aldosterone and kinin systems where it cleaves angiotensin I and bradykinin peptides, respectively. However, ACE also participates in numerous other physiological functions, can hydrolyse many peptide substrates and has various exo- and endopeptidase activities. ACE achieves this complexity by containing two homologous catalytic domains (N- and C-domains), which exhibit different substrate specificities. Here, we present the first open conformation structures of ACE N-domain and a unique closed C-domain structure (2.0 Å) where the C terminus of a symmetry-related molecule is observed inserted into the active-site cavity and binding to the zinc ion. The open native N-domain structure (1.85 Å) enables comparison with ACE2, a homologue previously observed in open and closed states. An open S2 _S'-mutant N-domain structure (2.80 Å) includes mutated residues in the S2 and S' subsites that effect ligand binding, but are distal to the binding site. Analysis of these structures provides important insights into how structural features of the ACE domains are able to accommodate the wide variety of substrates and allow different peptidase activities. DATABASE: The atomic coordinates and structure factors for Open nACE, Open S2_S'-nACE and Native G13-cACE structures have been deposited with codes 6ZPQ, 6ZPT and 6ZPU, respectively, in the RCSB Protein Data Bank, www.pdb.org.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Domínio Catalítico/genética , Peptidil Dipeptidase A/ultraestrutura , Conformação Proteica , Sítios de Ligação/genética , Cristalografia por Raios X , Bases de Dados de Proteínas , Humanos , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Ligação Proteica/genética , Especificidade por Substrato/genética
8.
Clin Sci (Lond) ; 134(21): 2851-2871, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33146371

RESUMO

Angiotensin converting enzyme (ACE) is well-known for its role in blood pressure regulation via the renin-angiotensin aldosterone system (RAAS) but also functions in fertility, immunity, haematopoiesis and diseases such as obesity, fibrosis and Alzheimer's dementia. Like ACE, the human homologue ACE2 is also involved in blood pressure regulation and cleaves a range of substrates involved in different physiological processes. Importantly, it is the functional receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 responsible for the 2020, coronavirus infectious disease 2019 (COVID-19) pandemic. Understanding the interaction between SARS-CoV-2 and ACE2 is crucial for the design of therapies to combat this disease. This review provides a comparative analysis of methodologies and findings to describe how structural biology techniques like X-ray crystallography and cryo-electron microscopy have enabled remarkable discoveries into the structure-function relationship of ACE and ACE2. This, in turn, has enabled the development of ACE inhibitors for the treatment of cardiovascular disease and candidate therapies for the treatment of COVID-19. However, despite these advances the function of ACE homologues in non-human organisms is not yet fully understood. ACE homologues have been discovered in the tissues, body fluids and venom of species from diverse lineages and are known to have important functions in fertility, envenoming and insect-host defence mechanisms. We, therefore, further highlight the need for structural insight into insect and venom ACE homologues for the potential development of novel anti-venoms and insecticides.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/enzimologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/enzimologia , Receptores Virais/metabolismo , Internalização do Vírus , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Interações Hospedeiro-Patógeno , Humanos , Pandemias , Peptidil Dipeptidase A/química , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Conformação Proteica , Receptores Virais/química , SARS-CoV-2 , Relação Estrutura-Atividade , Tratamento Farmacológico da COVID-19
9.
J Med Chem ; 63(10): 5488-5500, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32337993

RESUMO

Neprilysin (NEP) and angiotensin-converting enzyme (ACE) are two key zinc-dependent metallopeptidases in the natriuretic peptide and kinin systems and renin-angiotensin-aldosterone system, respectively. They play an important role in blood pressure regulation and reducing the risk of heart failure. Vasopeptidase inhibitors omapatrilat and sampatrilat possess dual activity against these enzymes by blocking the ACE-dependent conversion of angiotensin I to the potent vasoconstrictor angiotensin II while simultaneously halting the NEP-dependent degradation of vasodilator atrial natriuretic peptide. Here, we report crystal structures of omapatrilat, sampatrilat, and sampatrilat-ASP (a sampatrilat analogue) in complex with NEP at 1.75, 2.65, and 2.6 Å, respectively. A detailed analysis of these structures and the corresponding structures of ACE with these inhibitors has provided the molecular basis of dual inhibitor recognition involving the catalytic site in both enzymes. This new information will be very useful in the design of safer and more selective vasopeptidase inhibitors of NEP and ACE for effective treatment in hypertension and heart failure.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/metabolismo , Desenho de Fármacos , Mesilatos/metabolismo , Neprilisina/metabolismo , Peptidil Dipeptidase A/metabolismo , Piridinas/metabolismo , Tiazepinas/metabolismo , Tirosina/análogos & derivados , Inibidores da Enzima Conversora de Angiotensina/química , Anti-Hipertensivos/química , Anti-Hipertensivos/metabolismo , Cristalografia por Raios X/métodos , Mesilatos/química , Neprilisina/química , Peptidil Dipeptidase A/química , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Piridinas/química , Tiazepinas/química , Tirosina/química , Tirosina/metabolismo
10.
Biochem J ; 477(7): 1241-1259, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32195541

RESUMO

Angiotensin-converting enzyme (ACE) is best known for its formation of the vasopressor angiotensin II that controls blood pressure but is also involved in other physiological functions through the hydrolysis of a variety of peptide substrates. The enzyme contains two catalytic domains (nACE and cACE) that have different affinities for ACE substrates and inhibitors. We investigated whether nACE inhibitor backbones contain a unique property which allows them to take advantage of the hinging of nACE. Kinetic analysis showed that mutation of unique nACE residues, in both the S2 pocket and around the prime subsites (S') to their C-domain counterparts, each resulted in a decrease in the affinity of nACE specific inhibitors (SG6, 33RE and ketoACE-13) but it required the combined S2_S' mutant to abrogate nACE-selectivity. However, this was not observed with the non-domain-selective inhibitors enalaprilat and omapatrilat. High-resolution structures were determined for the minimally glycosylated nACE with the combined S2_S' mutations in complex with the ACE inhibitors 33RE (1.8 Å), omapatrilat (1.8 Å) and SG6 (1.7 Å). These confirmed that the affinities of the nACE-selective SG6, 33RE and ketoACE-13 are not only affected by direct interactions with the immediate environment of the binding site, but also by more distal residues. This study provides evidence for a more general mechanism of ACE inhibition involving synergistic effects of not only the S2, S1' and S2' subsites, but also residues involved in the sub-domain interface that effect the unique ways in which the two domains stabilize active site loops to favour inhibitor binding.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Domínio Catalítico , Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Pressão Sanguínea/fisiologia , Cristalografia por Raios X , Glicosilação , Humanos , Cinética , Ligantes , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Peptidil Dipeptidase A/genética , Ligação Proteica , Conformação Proteica em Folha beta/genética , Sistema Renina-Angiotensina/fisiologia
11.
Biochem J ; 476(22): 3505-3520, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31682720

RESUMO

The mosquitoes of the Anopheles and Aedes genus are some of the most deadly insects to humans because of their effectiveness as vectors of malaria and a range of arboviruses, including yellow fever, dengue, chikungunya, West Nile and Zika. The use of insecticides from different chemical classes is a key component of the integrated strategy against An. gambiae and Ae. aegypti, but the problem of insecticide resistance means that new compounds with different modes of action are urgently needed to replace chemicals that fail to control resistant mosquito populations. We have previously shown that feeding inhibitors of peptidyl dipeptidase A to both An. gambiae and Ae. aegypti mosquito larvae lead to stunted growth and mortality. However, these compounds were designed to inhibit the mammalian form of the enzyme (angiotensin-converting enzyme, ACE) and hence can have lower potency and lack selectivity as inhibitors of the insect peptidase. Thus, for the development of inhibitors of practical value in killing mosquito larvae, it is important to design new compounds that are both potent and highly selective. Here, we report the first structures of AnoACE2 from An. gambiae in its native form and with a bound human ACE inhibitor fosinoprilat. A comparison of these structures with human ACE (sACE) and an insect ACE homologue from Drosophila melanogaster (AnCE) revealed that the AnoACE2 structure is more similar to AnCE. In addition, important elements that differ in these structures provide information that could potentially be utilised in the design of chemical leads for selective mosquitocide development.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Anopheles/enzimologia , Proteínas de Insetos/química , Peptidil Dipeptidase A/química , Aedes/química , Aedes/enzimologia , Aedes/genética , Animais , Anopheles/química , Anopheles/genética , Anopheles/crescimento & desenvolvimento , Drosophila melanogaster/química , Drosophila melanogaster/enzimologia , Fosinopril/análogos & derivados , Fosinopril/química , Humanos , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/química , Larva/química , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Modelos Moleculares , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo
12.
Biochem J ; 476(10): 1553-1570, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31072910

RESUMO

Angiotensin-converting enzyme (ACE) is a zinc metalloprotease best known for its role in blood pressure regulation. ACE consists of two homologous catalytic domains, the N- and C-domain, that display distinct but overlapping catalytic functions in vivo owing to subtle differences in substrate specificity. While current generation ACE inhibitors target both ACE domains, domain-selective ACE inhibitors may be clinically advantageous, either reducing side effects or having utility in new indications. Here, we used site-directed mutagenesis, an ACE chimera and X-ray crystallography to unveil the molecular basis for C-domain-selective ACE inhibition by the bradykinin-potentiating peptide b (BPPb), naturally present in Brazilian pit viper venom. We present the BPPb N-domain structure in comparison with the previously reported BPPb C-domain structure and highlight key differences in peptide interactions with the S4 to S9 subsites. This suggests the involvement of these subsites in conferring C-domain-selective BPPb binding, in agreement with the mutagenesis results where unique residues governing differences in active site exposure, lid structure and dynamics between the two domains were the major drivers for C-domain-selective BPPb binding. Mere disruption of BPPb interactions with unique S2 and S4 subsite residues, which synergistically assist in BPPb binding, was insufficient to abolish C-domain selectivity. The combination of unique S9-S4 and S2' subsite C-domain residues was required for the favourable entry, orientation and thus, selective binding of the peptide. This emphasizes the need to consider factors other than direct protein-inhibitor interactions to guide the design of domain-selective ACE inhibitors, especially in the case of larger peptides.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Oligopeptídeos/química , Peptidil Dipeptidase A/química , Animais , Células CHO , Catálise , Cricetulus , Cristalografia por Raios X , Humanos , Mutagênese Sítio-Dirigida , Peptidil Dipeptidase A/genética , Domínios Proteicos
13.
J Med Chem ; 61(22): 10141-10154, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30372620

RESUMO

Omapatrilat was designed as a vasopeptidase inhibitor with dual activity against the zinc metallopeptidases angiotensin-1 converting enzyme (ACE) and neprilysin (NEP). ACE has two homologous catalytic domains (nACE and cACE), which exhibit different substrate specificities. Here, we report high-resolution crystal structures of omapatrilat in complex with nACE and cACE and show omapatrilat has subnanomolar affinity for both domains. The structures show nearly identical binding interactions for omapatrilat in each domain, explaining the lack of domain selectivity. The cACE complex structure revealed an omapatrilat dimer occupying the cavity beyond the S2 subsite, and this dimer had low micromolar inhibition of nACE and cACE. These results highlight residues beyond the S2 subsite that could be exploited for domain selective inhibition. In addition, it suggests the possibility of either domain specific allosteric inhibitors that bind exclusively to the nonprime cavity or the potential for targeting specific substrates rather than completely inhibiting the enzyme.


Assuntos
Desenho de Fármacos , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Piridinas/metabolismo , Tiazepinas/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Humanos , Ligantes , Modelos Moleculares
14.
J Biol Chem ; 293(39): 15330-15331, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266880

RESUMO

Bacterial pathogens use several strategies to infect host cells, one of which involves blocking host defenses. During infection, the bacterial effector proteins GtgA, GogA, PipA, and NleC are injected into host cells by the type III secretion system (T3SS), where they suppress the proinflammatory NF-κB signaling pathway to dampen immune responses. The authors demonstrate that these effectors bind NF-κB via their DNA-mimicking regions and uncover differences in effector sequences and structures explaining the individual specificities of these effectors for distinct NF-κB subunits.


Assuntos
Proteínas de Escherichia coli , NF-kappa B , Proteínas de Bactérias , DNA , Metaloproteases , Zinco
15.
FEBS J ; 285(8): 1477-1490, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29476645

RESUMO

Angiotensin-1-converting enzyme (ACE) is a zinc metallopeptidase that consists of two homologous catalytic domains (known as nACE and cACE) with different substrate specificities. Based on kinetic studies it was previously reported that sampatrilat, a tight-binding inhibitor of ACE, Ki = 13.8 nm and 171.9 nm for cACE and nACE respectively [Sharma et al., Journal of Chemical Information and Modeling (2016), 56, 2486-2494], was 12.4-fold more selective for cACE. In addition, samAsp, in which an aspartate group replaces the sampatrilat lysine, was found to be a nonspecific and lower micromolar affinity inhibitor. Here, we report a detailed three-dimensional structural analysis of sampatrilat and samAsp binding to ACE using high-resolution crystal structures elucidated by X-ray crystallography, which provides a molecular basis for differences in inhibitor affinity and selectivity for nACE and cACE. The structures show that the specificity of sampatrilat can be explained by increased hydrophobic interactions and a H-bond from Glu403 of cACE with the lysine side chain of sampatrilat that are not observed in nACE. In addition, the structures clearly show a significantly greater number of hydrophilic and hydrophobic interactions with sampatrilat compared to samAsp in both cACE and nACE consistent with the difference in affinities. Our findings provide new experimental insights into ligand binding at the active site pockets that are important for the design of highly specific domain selective inhibitors of ACE. DATABASE: The atomic coordinates and structure factors for N- and C-domains of ACE bound to sampatrilat and sampatrilat-Asp complexes (6F9V, 6F9R, 6F9T and 6F9U respectively) have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/).


Assuntos
Ácido Aspártico/metabolismo , Domínio Catalítico , Mesilatos/metabolismo , Peptidil Dipeptidase A/metabolismo , Tirosina/análogos & derivados , Ácido Aspártico/química , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Mesilatos/química , Peptidil Dipeptidase A/química , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Tirosina/química , Tirosina/metabolismo
16.
Mol Pharmacol ; 93(4): 344-354, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29371233

RESUMO

Angiotensin-converting enzyme (ACE) plays a central role in the renin-angiotensin system (RAS), which is primarily responsible for blood pressure homeostasis. Studies have shown that ACE inhibitors yield cardiovascular benefits that cannot be entirely attributed to the inhibition of ACE catalytic activity. It is possible that these benefits are due to interactions between ACE and RAS receptors that mediate the protective arm of the RAS, such as angiotensin II receptor type 2 (AT2R) and the receptor MAS. Therefore, in this study, we investigated the molecular interactions of ACE, including ACE homodimerization and heterodimerization with AT2R and MAS, respectively. Molecular interactions were assessed by fluorescence resonance energy transfer and bimolecular fluorescence complementation in human embryonic kidney 293 cells and Chinese hamster ovary-K1 cells transfected with vectors encoding fluorophore-tagged proteins. The specificity of dimerization was verified by competition experiments using untagged proteins. These techniques were used to study several potential requirements for the germinal isoform of angiotensin-converting enzyme expressed in the testes (tACE) dimerization as well as the effect of ACE inhibitors on both somatic isoforms of angiotensin-converting enzyme expressed in the testes (sACE) and tACE dimerization. We demonstrated constitutive homodimerization of sACE and of both of its domains separately, as well as heterodimerization of both sACE and tACE with AT2R, but not MAS. In addition, we investigated both soluble sACE and the sACE N domain using size-exclusion chromatography-coupled small-angle X-ray scattering and we observed dimers in solution for both forms of the enzyme. Our results suggest that ACE homo- and heterodimerization does occur under physiologic conditions.


Assuntos
Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Multimerização Proteica/fisiologia , Animais , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Cristalização , Células HEK293 , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
17.
J Med Chem ; 61(1): 344-359, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29206036

RESUMO

Angiotensin-I converting enzyme (ACE) is a zinc metalloprotease consisting of two catalytic domains (N- and C-). Most clinical ACE inhibitor(s) (ACEi) have been shown to inhibit both domains nonselectively, resulting in adverse effects such as cough and angioedema. Selectively inhibiting the individual domains is likely to reduce these effects and potentially treat fibrosis in addition to hypertension. ACEi from the GVK Biosciences database were inspected for possible N-domain selective binding patterns. From this set, a diprolyl chemical series was modeled using docking simulations. The series was expanded based on key target interactions involving residues known to impart N-domain selectivity. In total, seven diprolyl compounds were synthesized and tested for N-domain selective ACE inhibition. One compound with an aspartic acid in the P2 position (compound 16) displayed potent inhibition (Ki = 11.45 nM) and was 84-fold more selective toward the N-domain. A high-resolution crystal structure of compound 16 in complex with the N-domain revealed the molecular basis for the observed selectivity.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Desenho de Fármacos , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Prolina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Animais , Células CHO , Domínio Catalítico , Cricetulus , Simulação de Acoplamento Molecular , Prolina/metabolismo , Prolina/farmacologia , Especificidade por Substrato , Articulação Talocalcânea
18.
Sci Rep ; 7: 45409, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28345667

RESUMO

The control of mosquitoes is threatened by the appearance of insecticide resistance and therefore new control chemicals are urgently required. Here we show that inhibitors of mosquito peptidyl dipeptidase, a peptidase related to mammalian angiotensin-converting enzyme (ACE), are insecticidal to larvae of the mosquitoes, Aedes aegypti and Anopheles gambiae. ACE inhibitors (captopril, fosinopril and fosinoprilat) and two peptides (trypsin-modulating oostatic factor/TMOF and a bradykinin-potentiating peptide, BPP-12b) were all inhibitors of the larval ACE activity of both mosquitoes. Two inhibitors, captopril and fosinopril (a pro-drug ester of fosinoprilat), were tested for larvicidal activity. Within 24 h captopril had killed >90% of the early instars of both species with 3rd instars showing greater resistance. Mortality was also high within 24 h of exposure of 1st, 2nd and 3rd instars of An. gambiae to fosinopril. Fosinopril was also toxic to Ae. aegypti larvae, although the 1st instars appeared to be less susceptible to this pro-drug even after 72 h exposure. Homology models of the larval An. gambiae ACE proteins (AnoACE2 and AnoACE3) reveal structural differences compared to human ACE, suggesting that structure-based drug design offers a fruitful approach to the development of selective inhibitors of mosquito ACE enzymes as novel larvicides.


Assuntos
Aedes/efeitos dos fármacos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Anopheles/efeitos dos fármacos , Larva/efeitos dos fármacos , Animais , Captopril/farmacologia , Vetores de Doenças , Fosinopril/análogos & derivados , Fosinopril/farmacologia , Humanos , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Peptidil Dipeptidase A/metabolismo
19.
FEBS J ; 283(23): 4357-4369, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27754586

RESUMO

Several soil-derived Actinobacteria produce secondary metabolites that are proven specific and potent inhibitors of the human angiotensin-I-converting enzyme (ACE), a key target for the modulation of hypertension through its role in the renin-angiotensin-aldosterone system. K-26-DCP is a zinc dipeptidyl carboxypeptidase (DCP) produced by Astrosporangium hypotensionis, and an ancestral homologue of ACE. Here we report the high-resolution crystal structures of K-26-DCP and of its complex with the natural microbial tripeptide product K-26. The experimental results provide the structural basis for better understanding the specificity of K-26 for human ACE over bacterial DCPs. DATABASE: Structural data are available in the PDB under the accession numbers 5L43 and 5L44.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/química , Endopeptidases/química , Oligopeptídeos/química , Actinobacteria/genética , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Bases de Dados de Proteínas , Endopeptidases/genética , Endopeptidases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Modelos Moleculares , Oligopeptídeos/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos
20.
Chem Commun (Camb) ; 46(17): 2907-9, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20386818

RESUMO

A chimeric approach is used to discover microtubule disruptors with excellent in vitro activity and oral bioavailability; a ligand-protein interaction with carbonic anhydrase that enhances bioavailability is characterised by protein X-ray crystallography. Dosing of a representative chimera in a tumour xenograft model confirms the excellent therapeutic potential of the class.


Assuntos
Antineoplásicos/química , Anidrase Carbônica II/química , Moduladores de Tubulina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Sítios de Ligação , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Linhagem Celular Tumoral , Simulação por Computador , Cristalografia por Raios X , Humanos , Ligantes , Camundongos , Camundongos Nus , Moduladores de Tubulina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...