Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 7(1): 34, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365971

RESUMO

Network theory has fundamentally transformed our comprehension of complex systems, catalyzing significant advances across various domains of science and technology. In spectroscopic networks, hubs are the quantum states involved in the largest number of transitions. Here, utilizing network paths probed via precision metrology, absolute energies have been deduced, with at least 10-digit accuracy, for almost 200 hubs in the experimental spectroscopic networks of H216O and H218O. These hubs, lying on the ground vibrational states of both species and the bending fundamental of H216O, are involved in tens of thousands of observed transitions. Relying on the same hubs and other states, benchmark-quality line lists have been assembled, which supersede and improve, by three orders of magnitude, the accuracy of the massive amount of data reported in hundreds of papers dealing with Doppler-limited spectroscopy. Due to the omnipresence of water, these ultraprecise line lists could be applied to calibrate high-resolution spectra and serve ongoing and upcoming space missions.

2.
Opt Express ; 30(26): 46040-46059, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558568

RESUMO

A non-linear spectroscopic study of the HDO molecule is performed in the wavelength range of 1.36-1.42 µm using noise-immune cavity-enhanced optical-heterodyne molecular spectroscopy (NICE-OHMS). More than 100 rovibrational Lamb dips are recorded, with an experimental precision of 2-20 kHz, related to the first overtone of the O-H stretch fundamental of HD16O and HD18O. Significant perturbations, including distortions, shifts, and splittings, have been observed for a number of Lamb dips. These spectral perturbations are traced back to an AC-Stark effect, arising due to the strong laser field applied in all saturation-spectroscopy experiments. The AC-Stark effect mixes parity pairs, that is pairs of rovibrational states whose assignment differs solely in the Kc quantum number, where Kc is part of the standard J K a,K c asymmetric-top rotational label. Parity-pair mixing seems to be especially large for parity pairs with Ka ≥ 3, whereby their energy splittings become as small as a few MHz, resulting in multi-component asymmetric Lamb-dip profiles of gradually increasing complexity. These complex profiles often include crossover resonances. This effect is well known in saturation spectroscopy, but has not been reported in combination with parity-pair mixing. Parity-pair mixing is not seen in H2 16O and H2 18O, because their parity pairs correspond to ortho and para nuclear-spin isomers, whose interaction is prohibited. Despite the frequency shifts observed for HD16O and HD18O, the absolute accuracy of the detected transitions still exceeds that achievable by Doppler-limited techniques.

3.
J Phys Chem A ; 125(36): 7884-7890, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34472861

RESUMO

Huge efforts have recently been taken in the derivation of accurate compilations of rovibrational energies of water, one of the most important reference systems in spectroscopy. Such precision is desirable for all water isotopologues, although their investigation is challenged by hyperfine effects in their spectra. Frequency-comb locked noise-immune cavity-enhanced optical-heterodyne molecular spectroscopy (NICE-OHMS) allows for achieving high sensitivity, resolution, and accuracy. This technique has been employed to resolve the subtle hyperfine splittings of rovibrational transitions of H217O in the near-infrared region. Simulation and interpretation of the H217O saturation spectra have been supported by coupled-cluster calculations performed with large basis sets and accounting for high-level corrections. Experimental 17O hyperfine parameters are found in excellent agreement with the corresponding computed values. The need of including small hyperfine effects in the analysis of H217O spectra has been demonstrated together with the ability of the computational strategy employed for providing quantitative predictions of the corresponding parameters.

4.
Nat Commun ; 11(1): 1708, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249848

RESUMO

Frequency combs and cavity-enhanced optical techniques have revolutionized molecular spectroscopy: their combination allows recording saturated Doppler-free lines with ultrahigh precision. Network theory, based on the generalized Ritz principle, offers a powerful tool for the intelligent design and validation of such precision-spectroscopy experiments and the subsequent derivation of accurate energy differences. As a proof of concept, 156 carefully-selected near-infrared transitions are detected for H216O, a benchmark system of molecular spectroscopy, at kHz accuracy. These measurements, augmented with 28 extremely-accurate literature lines to ensure overall connectivity, allow the precise determination of the lowest ortho-H216O energy, now set at 23.794 361 22(25) cm-1, and 160 energy levels with similarly high accuracy. Based on the limited number of observed transitions, 1219 calibration-quality lines are obtained in a wide wavenumber interval, which can be used to improve spectroscopic databases and applied to frequency metrology, astrophysics, atmospheric sensing, and combustion chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...