Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(14): 5452-5458, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35344655

RESUMO

Here we present a comparative study of the magnetic and crystal chemical properties of two Co2+ containing garnets. CaY2Co2Ge3O12 (which has been reported previously) and NaCa2Co2V3O12 both exhibit the onset of antiferromagnetic order around 6 K as well as field-induced transitions around 7 and 10 T, respectively, that manifest as anomalies in the dielectric properties of the material. We perform detailed crystal-chemistry analyses and complementary density functional theory calculations to show that very minor changes in the local environment of the Co ions explain the differences in the two magnetic structures and their respective properties.

2.
ACS Appl Mater Interfaces ; 10(6): 5673-5681, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29400946

RESUMO

Solid-state lighting using laser diodes is an exciting new development that requires new phosphor geometries to handle the greater light fluxes involved. The greater flux from the source results in more conversion and therefore more conversion loss in the phosphor, which generates self-heating, surpassing the stability of current encapsulation strategies used for light-emitting diodes, usually based on silicones. Here, we present a rapid method using spark plasma sintering (SPS) for preparing ceramic phosphor composites of the canonical yellow-emitting phosphor Ce-doped yttrium aluminum garnet (Ce:YAG) combined with a chemically compatible and thermally stable oxide, α-Al2O3. SPS allows for compositional modulation, and phase fraction, microstructure, and luminescent properties of ceramic composites with varying compositions are studied here in detail. The relationship between density, thermal conductivity, and temperature rise during laser-driven phosphor conversion is elucidated, showing that only modest densities are required to mitigate thermal quenching in phosphor composites. Additionally, the scattering nature of the ceramic composites makes them ideal candidates for laser-driven white lighting in reflection mode, where Lambertian scattering of blue light offers great color uniformity, and a luminous flux >1000 lm is generated using a single commercial laser diode coupled to a single phosphor element.

3.
Opt Express ; 25(15): 17480-17487, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789239

RESUMO

Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021¯)  substrate emitting at 410 nm was used for the transmitter. The measured modulation bandwidth of the LD was 1 GHz, which was limited by the avalanche photodetector. The emission from the NUV LD and the RGB phosphor combination measured a color rendering index (CRI) of 79 and correlated color temperature (CCT) of 4050 K, indicating promise of this approach for creating high quality white lighting. Using this configuration, data was successfully transmitted at a rate of more than 1 Gbps. This NUV laser-based system is expected to have lower background noise from sunlight at the LD emission wavelength than a system that uses a blue LD due to the rapid fall off in intensity of the solar spectrum in the NUV spectral region.

4.
Inorg Chem ; 56(4): 2153-2158, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28165235

RESUMO

SiAlON ceramics, solid solutions based on the Si3N4 structure, are important, lightweight structural materials with intrinsically high strength, high hardness, and high thermal and chemical stability. Described by the chemical formula ß-Si6-zAlzOzN8-z, from a compositional viewpoint, these materials can be regarded as solid solutions between Si3N4 and Al3O3N. A key aspect of the structural evolution with increasing Al and O (z in the formula) is to understand how these elements are distributed on the ß-Si3N4 framework. The average and local structural evolution of highly phase-pure samples of ß-Si6-zAlzOzN8-z with z = 0.050, 0.075, and 0.125 are studied here, using a combination of X-ray diffraction, NMR studies, and density functional theory calculations. Synchrotron X-ray diffraction establishes sample purity and indicates subtle changes in the average structure with increasing Al content in these compounds. Solid-state magic-angle-spinning 27Al NMR experiments, coupled with detailed ab initio calculations of NMR spectra of Al in different AlOqN4-q tetrahedra (0 ≤ q ≤ 4), reveal a tendency of Al and O to cluster in these materials. Independently, the calculations suggest an energetic preference for Al-O bond formation, instead of a random distribution, in the ß-SiAlON system.

5.
Langmuir ; 32(4): 1166-70, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26796986

RESUMO

Photoluminescent silicon nanocrystals are very attractive for biomedical and electronic applications. Here a new process is presented to synthesize photoluminescent silicon nanocrystals with diameters smaller than 6 nm from a porous silicon template. These nanoparticles are formed using a pore-wall thinning approach, where the as-etched porous silicon layer is partially oxidized to silica, which is dissolved by a hydrofluoric acid solution, decreasing the pore-wall thickness. This decrease in pore-wall thickness leads to a corresponding decrease in the size of the nanocrystals that make up the pore walls, resulting in the formation of smaller nanoparticles during sonication of the porous silicon. Particle diameters were measured using dynamic light scattering, and these values were compared with the nanocrystallite size within the pore wall as determined from X-ray diffraction. Additionally, an increase in the quantum confinement effect is observed for these particles through an increase in the photoluminescence intensity of the nanoparticles compared with the as-etched nanoparticles, without the need for a further activation step by oxidation after synthesis.


Assuntos
Nanopartículas/química , Silício/química , Luminescência , Oxirredução , Tamanho da Partícula , Porosidade , Sonicação , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA