Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Prolif ; 52(6): e12653, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31489992

RESUMO

OBJECTIVES: Bioreactor-based production systems have the potential to overcome limitations associated with conventional tissue engineering manufacturing methods, facilitating regulatory compliant and cost-effective production of engineered grafts for widespread clinical use. In this work, we established a bioreactor-based manufacturing system for the production of cartilage grafts. MATERIALS & METHODS: All bioprocesses, from cartilage biopsy digestion through the generation of engineered grafts, were performed in our bioreactor-based manufacturing system. All bioreactor technologies and cartilage tissue engineering bioprocesses were transferred to an independent GMP facility, where engineered grafts were manufactured for two large animal studies. RESULTS: The results of these studies demonstrate the safety and feasibility of the bioreactor-based manufacturing approach. Moreover, grafts produced in the manufacturing system were first shown to accelerate the repair of acute osteochondral defects, compared to cell-free scaffold implants. We then demonstrated that grafts produced in the system also facilitated faster repair in a more clinically relevant chronic defect model. Our data also suggested that bioreactor-manufactured grafts may result in a more robust repair in the longer term. CONCLUSION: By demonstrating the safety and efficacy of bioreactor-generated grafts in two large animal models, this work represents a pivotal step towards implementing the bioreactor-based manufacturing system for the production of human cartilage grafts for clinical applications. Read the Editorial for this article on doi:10.1111/cpr.12625.


Assuntos
Reatores Biológicos , Condrócitos/citologia , Engenharia Tecidual , Alicerces Teciduais , Doença Aguda , Animais , Cartilagem Articular/patologia , Doença Crônica , Feminino , Modelos Animais , Ovinos , Engenharia Tecidual/métodos
2.
Stem Cells Dev ; 28(6): 370-383, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30654721

RESUMO

Osteogenic differentiation is a complex and still poorly understood biological process regulated by intrinsic cellular signals and extrinsic microenvironmental cues. Following appropriate stimuli, mesenchymal stem cells (MSCs) differentiate into osteoblasts through a tightly regulated multistep process driven by several transcription factors and characterized by the expression of a number of bone-specific proteins. In this study, we describe a novel transcription factor that we named osteoblast inducer (ObI)-1, involved in MSC differentiation toward the osteogenic lineage. ObI-1 encodes for a nuclear protein subjected to proteasomal degradation and expressed during osteoblast differentiation both in a murine multipotent mesenchymal cell line (W20-17) and in primary murine MSCs. RNA interference-mediated knockdown of ObI-1 expression significantly impairs osteoblast differentiation and matrix mineralization with reduced expression of the osteogenic markers, Runt-related transcription factor 2 (Runx2) and osteopontin. Conversely, ObI-1 overexpression enhances osteogenic differentiation and bone-specific markers expression. ObI-1 stimulates bone morphogenetic protein (BMP)-4 expression and the consequent activation of the Smad pathway; treatment with a BMP receptor type I antagonist completely abolishes ObI-1-mediated stimulation of osteogenic differentiation. Collectively, our findings suggest that ObI-1 modulates osteogenic differentiation, at least in part, through the BMP signaling pathway, increasing Runx2 activation and leading to osteoblast commitment and maturation.


Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese , Fatores de Transcrição , Animais , Antígenos de Diferenciação/genética , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Osteoblastos/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
J Cell Physiol ; 230(7): 1466-74, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25556973

RESUMO

Clinical studies of large human populations and pharmacological interventions in rodent models have recently suggested that anti-hypertensive drugs that target angiotensin II (Ang II) activity may also reduce loss of bone mineral density. Here, we identified in a genetic screening the Ang II type I receptor (AT1R) as a potential determinant of osteogenic differentiation and, implicitly, bone formation. Silencing of AT1R expression by RNA interference severely impaired the maturation of a multipotent mesenchymal cell line (W20-17) along the osteoblastic lineage. The same effect was also observed after the addition of the AT1R antagonist losartan but not the AT2R inhibitor PD123,319. Additional cell culture assays traced the time of greatest losartan action to the early stages of W20-17 differentiation, namely during cell proliferation. Indeed, addition of Ang II increased proliferation of differentiating W20-17 and primary mesenchymal stem cells and this stimulation was reversed by losartan treatment. Cells treated with losartan also displayed an appreciable decrease of activated (phosphorylated)-Smad2/3 proteins. Moreover, Ang II treatment elevated endogenous transforming growth factor ß (TGFß) expression considerably and in an AT1R-dependent manner. Finally, exogenous TGFß was able to restore high proliferative activity to W20-17 cells that were treated with both Ang II and losartan. Collectively, these results suggest a novel mechanism of Ang II action in bone metabolism that is mediated by TGFß and targets proliferation of osteoblast progenitors.


Assuntos
Regulação da Expressão Gênica/fisiologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Receptor Tipo 1 de Angiotensina/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Angiotensinas , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Imidazóis/farmacologia , Losartan/farmacologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Osteoblastos/fisiologia , Piridinas/farmacologia , RNA Interferente Pequeno , Fator de Crescimento Transformador beta/genética
4.
Genesis ; 50(8): 635-41, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22374917

RESUMO

Loss-of-function experiments in mice have yielded invaluable mechanistic insights into the pathogenesis of Marfan syndrome (MFS) and implicitly, into the multiple roles fibrillin-1 microfibrils play in the developing and adult organism. Unfortunately, neonatal death from aortic complications of mice lacking fibrillin-1 (Fbn1(-/-) mice) has limited the scope of these studies. Here, we report the creation of a conditional mutant allele (Fbn1(fneo) ) that contains loxP sites bordering exon1 of Fbn1 and an frt-flanked neo expression cassette downstream of it. Fbn1(fneo/+) mice were crossed with FLPeR mice and the resulting Fbn1(Lox/+) progeny were crossed with Fbn1(+/-) ;CMV-Cre mice to generate Fbn1(CMV-/-) mice, which were found to phenocopy the vascular abnormalities of Fbn1(-/-) mice. Furthermore, mating Fbn1(Lox/+) mice with Prx1-Cre or Osx-Cre mice revealed an unappreciated role of fibrillin-1 microfibrils in restricting osteoprogenitor cell recruitment. Fbn1(Lox/+) mice are, therefore, an informative genetic resource to further dissect MFS pathogenesis and the role of extracellular fibrillin-1 assemblies in organ development and homeostasis.


Assuntos
Microfibrilas/genética , Proteínas dos Microfilamentos/genética , Osteoblastos/metabolismo , Osteogênese/genética , Animais , Densidade Óssea/genética , Diferenciação Celular , Fibrilina-1 , Fibrilinas , Técnicas de Silenciamento de Genes , Ordem dos Genes , Marcação de Genes/métodos , Genótipo , Camundongos , Camundongos Knockout , Microfibrilas/metabolismo , Mutação , Osteoblastos/citologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA