Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 14(45): 9175-9184, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30398509

RESUMO

Stress oscillation has been observed in a number of linear thermoplastic polymers during the cold-drawing process, where the polymers exhibit periodic self-excited oscillatory neck propagation. However, the origin of the mechanical stress oscillation process and its relationship with the crystalline morphology of the polymer are still under debate. In this work, we revisit the stress oscillation behavior by studying a semi-crystalline polyester, poly(butylene succinate) (PBS), a biodegradable polymer suitable for biomedical and packaging applications. Stress oscillation of PBS is observed when deformed at a range of elongation rates from 10 to 200 mm min-1, and the fluctuation magnitude decays as the deformation temperature increases from 23 to 100 °C. Periodic transparent/opaque bands form during necking of PBS, which consists of alternating regions of highly oriented crystalline zones and microcavities due to crazing and voiding, although the degree of crystallinity did not change significantly in the bands. Simultaneous small- and wide-angle X-ray scattering confirms that the alternating stress increases, as shown in the stress-strain curves, correspond to the appearance of the transparent bands in the sample, and the abrupt drop of the stress is the result of voiding during the neck propagation. The voiding and cavitation are ultimately responsible for the stress oscillation process in PBS. The in-depth analysis of this work is important in understanding and controlling the occurrence of instabilities/cavitation during polymer processing such as film blowing, biaxial stretching and injection moulding of biodegradable polymer materials.

2.
Faraday Discuss ; 138: 273-85; discussion 317-35, 433-4, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18447021

RESUMO

The cathode electrocatalysts for proton exchange membrane (PEM) fuel cells are commonly platinum and platinum based alloy nanoparticles dispersed on a carbon support. Control over the particle size and composition has, historically, been attained empirically, making systematic studies of the effects of various structural parameters difficult. The controlled surface modification methodology used in this work has enabled the controlled modification of carbon supported Pt nanoparticles by Cr so as to yield nanoalloy particles with defined compositions. Subsequent heat treatment in 5% H2 in N2 resulted in the formation of a distinct Pt3Cr alloy phase which was either restricted to the surface of the particles or present throughout the bulk of the particle structure. Measurement of the oxygen reduction activity of the catalysts was accomplished using the rotating thin film electrode method and the activities obtained were related to the structure of the nanoalloy catalyst particles, largely determined using Cr K edge and Pt L3 edge XAS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA