Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(39): 16161-16169, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37729091

RESUMO

Hybrid lead-halide perovskites have been studied extensively for their promising optoelectronic properties and prospective applications, including photovoltaics, solid-state lighting, and radiation detection. Research into these materials has also been aided by the simple and low-temperature synthetic conditions involved in solution-state deposition/crystallization or melt-processing techniques. However, concern over lead toxicity has plagued the field since its infancy. One of the most promising routes to mitigating toxicity in hybrid perovskite materials is substituting isoelectronic Bi(III) for Pb(II). Various methods have been developed to allow pnictide-based systems to capture properties of the Pb(II) analogues, but the ability to melt extended hybrid pnictide-halide materials has not been investigated. In this work, we prepare a series of one-dimensional antimony- and bismuth-iodide hybrid materials employing tetramethylpiperazinium (TMPZ)-related cations. We observe, for the first time, the ability to melt extended hybrid pnictide-halide materials for both the Sb(III) and Bi(III) systems. Additionally, we find that Sb(III) analogues melt at lower temperatures and attribute this observation to structural changes induced by the increased stereochemical activity of the Sb(III) lone pair coupled with the reduction in effective dimensionality due to steric interactions with the organic cations. Finally, we demonstrate the ability to melt process phase pure thin films of (S-MeTMPZ)SbI5.

2.
Chem Commun (Camb) ; 59(53): 8302-8305, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37318793

RESUMO

1-Methylhexylammonium tin iodide yields the lowest reported melting temperature (Tm = 142 °C) to date among lead-free hybrid perovskite semiconductors. Molecular branching near the organic ammonium group coupled with tuning of metal/halogen character suppresses Tm and facilitates effective melt-based deposition of films with 568 nm absorption onset.


Assuntos
Compostos de Cálcio , Óxidos , Temperatura , Semicondutores
3.
Chem Sci ; 13(34): 9973-9979, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36199633

RESUMO

The recent observation of broadband white-light emission from the inorganic sheets of certain layered lead-bromide perovskites has instigated a multitude of studies on this unusual phenomenon. However, the vast majority of layered bromide perovskites have flat (001) inorganic sheets and display a narrow photoluminescence at room temperature. A handful of heavily distorted (001) perovskites display broad emission, but to date, there is no method of predicting which perovskites will produce white light at room temperature prior to screening different organic molecules that can template 2D perovskites and crystallizing and analyzing the material. By studying ten Pb-Cl perovskites, we find that they all exhibit a broad yellow emission, which is strikingly invariant despite different distortions in the inorganic framework seen across the series. We postulate that this broad emission is intrinsic to all layered Pb-Cl perovskites. Although broad, the emission is not white. By adding Br to the Pb-Cl perovskites we obtain both the narrow emission and the broad emission such that the combined emission color smoothly varies from yellow to warm white to cold white as a function of the halide ratio. Thus, alloying Br to Pb-Cl perovskites appears to be a simple and general strategy for reliably obtaining white light at room temperature from (001) perovskites, regardless of the templating effects of the organic molecules, which should greatly expand the number of white-light-emitting layered perovskites.

4.
J Phys Chem A ; 122(26): 5730-5734, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29897245

RESUMO

Aromaticity profoundly affects molecular orbitals in polycyclic aromatic hydrocarbons. X-ray core electron spectroscopy has observed that carbon 1s-π* transitions can be broadened or even split in some polycyclic systems, although the origin of the effect has remained obscure. The π electrons in polycyclic systems are typically classified in the Clar model as belonging to either true aromatic sextets (similar to benzene) or isolated double bonds (similar to olefins). Here, bulk-sensitive carbon core excitation spectra are presented for a series of polycyclic systems and show that the magnitude of the 1s-π* splitting is determined primarily by the ratio of true aromatic sextets to isolated double bonds. The observed splitting can be rationalized in terms of ground state energetics as described by Hückel, driven by the π electron structure described by Clar. This simple model including only ground state energetics is shown to explain the basics physics behind the spectral evolution for a broad set of polycyclic aromatic hydrocarbons, although some residual deviations between this model and experiment can likely be improved by including a more detailed electronic structure and the core hole effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA