Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 17346, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478395

RESUMO

Seeds exhibit wide variation in the fatty acid composition of their storage oil. However, the genetic basis of this variation is only partially understood. Here we have used a multi-parent advanced generation inter-cross (MAGIC) population to study the genetic control of fatty acid chain length in Arabidopsis thaliana seed oil. We mapped four quantitative trait loci (QTL) for the quantity of the major very long chain fatty acid species 11-eicosenoic acid (20:1), using multiple QTL modelling. Surprisingly, the main-effect QTL does not coincide with FATTY ACID ELONGASE 1 and a parallel genome wide association study suggested that LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASE 2 (LPCAT2) is a candidate for this QTL. Regression analysis also suggested that LPCAT2 expression and 20:1 content in seeds of the 19 MAGIC founder accessions are related. LPCAT is a key component of the Lands cycle; an acyl editing pathway that enables acyl-exchange between the acyl-Coenzyme A and phosphatidylcholine precursor pools used for microsomal fatty acid elongation and desaturation, respectively. We Mendelianised the main-effect QTL using biparental chromosome segment substitution lines and carried out complementation tests to show that a single cis-acting polymorphism in the LPCAT2 promoter causes the variation in seed 20:1 content, by altering the LPCAT2 expression level and total LPCAT activity in developing siliques. Our work establishes that oilseed species exhibit natural variation in the enzymic capacity for acyl editing and this contributes to the genetic control of storage oil composition.


Assuntos
Arabidopsis/genética , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Sementes/genética , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mapeamento Cromossômico , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos/química , Ácidos Graxos/genética , Ácidos Graxos Monoinsaturados/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Estudo de Associação Genômica Ampla , Óleos de Plantas/química , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Sementes/metabolismo
2.
Plant J ; 89(1): 3-14, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27595588

RESUMO

Coordination of endomembrane biogenesis with cell cycle progression is considered to be important in maintaining cell function during growth and development. We previously showed that the disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE (PAH) activity in Arabidopsis thaliana stimulates biosynthesis of the major phospholipid phosphatidylcholine (PC) and causes expansion of the endoplasmic reticulum. Here we show that PC biosynthesis is repressed by disruption of the core cell cycle regulator CYCLIN-DEPENDENT KINASE A;1 (CDKA;1) and that this repression is reliant on PAH. Furthermore, we show that cyclin-dependent kinases (CDKs) phosphorylate PAH1 at serine 162, which reduces both its activity and membrane association. Expression of a CDK-insensitive version of PAH1 with a serine 162 to alanine substitution represses PC biosynthesis and also reduces the rate of cell division in early leaf development. Together our findings reveal a physiologically important mechanism that couples the rate of phospholipid biosynthesis and endomembrane biogenesis to cell cycle progression in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fosfatidato Fosfatase/metabolismo , Fosfatidilcolinas/biossíntese , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Fosfatidato Fosfatase/genética , Fosforilação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas
3.
Plant Signal Behav ; 10(10): e1065367, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26225871

RESUMO

Coordination of membrane lipid biosynthesis is important for cell function during plant growth and development. Here we summarize our recent work on PHOSPHATIDIC ACID PHOSPHOHYDROLASE (PAH) which suggests that this enzyme is a key regulator of phosphaticylcholine (PC) biosynthesis in Arabidopsis thaliana. Disruption of PAH activity elevates phosphatidic acid (PA) levels and stimulates PC biosynthesis and biogenesis of the endoplasmic reticulum (ER). Furthermore, the activity of PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE (CCT), which is the key enzyme controlling the rate of PC biosynthesis, is directly stimulated by PA and expression of a constitutively active version of CCT replicates the effects of PAH disruption. Hence PAH activity can control the abundance of PA, which in turn can modulate CCT activity to govern the rate of PC biosynthesis. Crucially it is not yet clear how PAH activity is regulated in Arabidopsis but there is evidence that PAH1 and PAH2 are both phosphorylated and further work will be required to investigate whether this is functionally significant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Colina-Fosfato Citidililtransferase/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatidato Fosfatase/metabolismo , Fosfatidilcolinas/metabolismo , Hidrolases/metabolismo , Lipídeos de Membrana/biossíntese , Ácidos Fosfatídicos/metabolismo , Fosforilação
4.
Plant Cell ; 27(4): 1251-64, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25862304

RESUMO

Regulation of membrane lipid biosynthesis is critical for cell function. We previously reported that disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 (PAH1) and PAH2 stimulates net phosphatidylcholine (PC) biosynthesis and proliferation of the endoplasmic reticulum (ER) in Arabidopsis thaliana. Here, we show that this response is caused specifically by a reduction in the catalytic activity of the protein and positively correlates with an accumulation of its substrate, phosphatidic acid (PA). The accumulation of PC in pah1 pah2 is suppressed by disruption of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE1 (CCT1), which encodes a key enzyme in the nucleotide pathway for PC biosynthesis. The activity of recombinant CCT1 is stimulated by lipid vesicles containing PA. Truncation of CCT1, to remove the predicted C-terminal amphipathic lipid binding domain, produced a constitutively active enzyme. Overexpression of native CCT1 in Arabidopsis has no significant effect on PC biosynthesis or ER morphology, but overexpression of the truncated constitutively active version largely replicates the pah1 pah2 phenotype. Our data establish that membrane homeostasis is regulated by lipid composition in Arabidopsis and reveal a mechanism through which the abundance of PA, mediated by PAH activity, modulates CCT activity to govern PC content.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Colina-Fosfato Citidililtransferase/metabolismo , Fosfatidato Fosfatase/metabolismo , Fosforilcolina/metabolismo , Proteínas de Arabidopsis/genética , Colina-Fosfato Citidililtransferase/genética , Fosfatidato Fosfatase/genética
5.
Nat Commun ; 6: 6659, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25858700

RESUMO

Gluconeogenesis is a fundamental metabolic process that allows organisms to make sugars from non-carbohydrate stores such as lipids and protein. In eukaryotes only one gluconeogenic route has been described from organic acid intermediates and this relies on the enzyme phosphoenolpyruvate carboxykinase (PCK). Here we show that two routes exist in Arabidopsis, and that the second uses pyruvate, orthophosphate dikinase (PPDK). Gluconeogenesis is critical to fuel the transition from seed to seedling. Arabidopsis pck1 and ppdk mutants are compromised in seed-storage reserve mobilization and seedling establishment. Radiolabelling studies show that PCK predominantly allows sugars to be made from dicarboxylic acids, which are products of lipid breakdown. However, PPDK also allows sugars to be made from pyruvate, which is a major product of protein breakdown. We propose that both routes have been evolutionarily conserved in plants because, while PCK expends less energy, PPDK is twice as efficient at recovering carbon from pyruvate.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Gluconeogênese/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Piruvato Ortofosfato Diquinase/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Carboidratos/biossíntese , Carbono/metabolismo , Ácidos Dicarboxílicos/metabolismo , Metabolismo dos Lipídeos/genética , Mutação , Fosfoenolpiruvato Carboxilase/genética , Piruvato Ortofosfato Diquinase/genética , Ácido Pirúvico/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Transdução de Sinais
6.
Plant J ; 64(3): 411-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20969742

RESUMO

Reticulons are integral endoplasmic reticulum (ER) membrane proteins that have the ability to shape the ER into tubules. It has been hypothesized that their unusually long conserved hydrophobic regions cause reticulons to assume a wedge-like topology that induces membrane curvature. Here we provide proof of this hypothesis. When over-expressed, an Arabidopsis thaliana reticulon (RTNLB13) localized to, and induced constrictions in, cortical ER tubules. Ectopic expression of RTNLB13 was sufficient to induce ER tubulation in an Arabidopsis mutant (pah1 pah2) whose ER membrane is mostly present in a sheet-like form. By sequential shortening of the four transmembrane domains (TMDs) of RTNLB13, we show that the length of the transmembrane regions is directly correlated with the ability of RTNLB13 to induce membrane tubulation and to form low-mobility complexes within the ER membrane. We also show that full-length TMDs are necessary for the ability of RTNLB13 to reside in the ER membrane.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/química , Microtúbulos/metabolismo , Nicotiana/química , Nicotiana/genética
7.
Traffic ; 9(3): 408-16, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18194392

RESUMO

The plant vacuolar sorting receptor (VSR) binds proteins carrying vacuolar sorting signals (VSS) of the 'sequence-specific' type (ssVSS) but not the C-terminal, hydrophobic sorting signals (ctVSS). Seeds of Arabidopsis mutants lacking the major VSR isoform, AtVSR1, secrete a proportion of the proteins destined to storage vacuoles. The sorting signals for these proteins are not well defined, but they do not seem to be of the ssVSS type. Here, we tested whether absence of VSR1 in seeds leads to secretion of reporter proteins carrying ssVSS but not ctVSS. Our results show that reporters carrying either ssVSS or ctVSS are equally secreted in the absence of VSR1. We discuss our findings in relation to the current model for vacuolar sorting.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sequência de Bases , DNA de Plantas/genética , Genes de Plantas , Genes Reporter , Modelos Biológicos , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/metabolismo , Solubilidade , Vacúolos/metabolismo
8.
Traffic ; 9(1): 94-102, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17980018

RESUMO

We have cloned a member of the reticulon (RTN) family of Arabidopsis thaliana (RTNLB13). When fused to yellow fluorescent protein (YFP) and expressed in tobacco leaf epidermal cells, RTNLB13 is localized in the endoplasmic reticulum (ER). Coexpression of a soluble ER luminal marker reveals that YFP-tagged, myc-tagged or untagged RTNLB13 induces severe morphological changes to the lumen of the ER. We show, using fluorescence recovery after photobleaching (FRAP) analysis, that RTNLB13 overexpression greatly reduces diffusion of soluble proteins within the ER lumen, possibly by introducing constrictions into the membrane. In spite of this severe phenotype, Golgi shape, number and dynamics appear unperturbed and secretion of a reporter protein remains unaffected.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Arabidopsis/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Recuperação de Fluorescência Após Fotodegradação , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Microscopia Confocal , Filogenia , Transporte Proteico , Proteínas Recombinantes/metabolismo
9.
Plant Physiol ; 145(4): 1371-82, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17905861

RESUMO

We generated fusions between three Arabidopsis (Arabidopsis thaliana) tonoplast intrinsic proteins (TIPs; alpha-, gamma-, and delta-TIP) and yellow fluorescent protein (YFP). We also produced soluble reporters consisting of the monomeric red fluorescent protein (RFP) and either the C-terminal vacuolar sorting signal of phaseolin or the sequence-specific sorting signal of proricin. In transgenic Arabidopsis leaves, mature roots, and root tips, all TIP fusions localized to the tonoplast of the central vacuole and both of the lumenal RFP reporters were found within TIP-delimited vacuoles. In embryos from developing, mature, and germinating seeds, all three TIPs localized to the tonoplast of protein storage vacuoles. To determine the temporal TIP expression patterns and to rule out mistargeting due to overexpression, we generated plants expressing YFP fused to the complete genomic sequences of the three TIP isoforms. In transgenic Arabidopsis, gamma-TIP expression was limited to vegetative tissues, but specifically excluded from root tips, whereas alpha-TIP was exclusively expressed during seed maturation. delta-TIP was expressed in vegetative tissues, but not root tips, at a later stage than gamma-TIP. Our findings indicate that, in the Arabidopsis tissues analyzed, two different vacuolar sorting signals target soluble proteins to a single vacuolar location. Moreover, TIP isoform distribution is tissue and development specific, rather than organelle specific.


Assuntos
Arabidopsis/ultraestrutura , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Vacúolos/ultraestrutura , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Biomarcadores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas Luminescentes/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Engenharia de Proteínas , Isoformas de Proteínas/metabolismo , Sementes/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...