Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Clin Exp Immunol ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642912

RESUMO

B and T cells collaborate to drive autoimmune disease (AID). Historically, B and T cell (B-T cell) co-interaction was targeted through different pathways such as alemtuzumab, abatacept, and dapirolizumab with variable impact on B cell depletion (BCD), whereas the majority of patients with AID including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and organ transplantation benefit from targeted BCD with anti-CD20 monoclonal antibodies such as rituximab, ocrelizumab or ofatumumab. Refractory AID is a significant problem for patients with incomplete BCD with a greater frequency of IgD-CD27+ switched memory B cells, CD19+CD20- B cells and plasma cells that are not directly targeted by anti-CD20 antibodies, whereas most lymphoid tissue plasma cells express CD19. Furthermore, B-T cell collaboration is predominant in lymphoid tissues and at sites of inflammation such as the joint and kidney, where BCD may be inefficient, due to limited access to key effector cells. In the treatment of cancer, chimeric antigen receptor (CAR) T cell therapy and T cell engagers (TCE) that recruit T cells to induce B cell cytotoxicity have delivered promising results for anti-CD19 CAR T cell therapies, the CD19 TCE blinatumomab and CD20 TCE such as mosunetuzumab, glofitamab or epcoritamab. Limited evidence suggests that anti-CD19 CAR T cell therapy may be effective in managing refractory AID whereas we await evaluation of TCE for use in non-oncological indications. Therefore, here, we discuss the potential mechanistic advantages of novel therapies that rely on T cells as effector cells to disrupt B-T cell collaboration toward overcoming rituximab-resistant AID.

2.
Brain Behav Immun ; 118: 468-479, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503395

RESUMO

Chronic lymphocytic leukaemia (CLL) is characterised by the clonal proliferation and accumulation of mature B-cells and is often treated with rituximab, an anti-CD20 monoclonal antibody immunotherapy. Rituximab often fails to induce stringent disease eradication, due in part to failure of antibody-dependent cellular cytotoxicity (ADCC) which relies on natural killer (NK)-cells binding to rituximab-bound CD20 on B-cells. CLL cells are diffusely spread across lymphoid and other bodily tissues, and ADCC resistance in survival niches may be due to several factors including low NK-cell frequency and a suppressive stromal environment that promotes CLL cell survival. It is well established that exercise bouts induce a transient relocation of NK-cells and B-cells into peripheral blood, which could be harnessed to enhance the efficacy of rituximab in CLL by relocating both target and effector cells together with rituximab in blood. In this pilot study, n = 20 patients with treatment-naïve CLL completed a bout of cycling 15 % above anaerobic threshold for âˆ¼ 30-minutes, with blood samples collected pre-, immediately post-, and 1-hour post-exercise. Flow cytometry revealed that exercise evoked a 254 % increase in effector (CD3-CD56+CD16+) NK-cells in blood, and a 67 % increase in CD5+CD19+CD20+ CLL cells in blood (all p < 0.005). NK-cells were isolated from blood samples pre-, and immediately post-exercise and incubated with primary isolated CLL cells with or without the presence of rituximab to determine specific lysis using a calcein-release assay. Rituximab-mediated cell lysis increased by 129 % following exercise (p < 0.001). Direct NK-cell lysis of CLL cells - independent of rituximab - was unchanged following exercise (p = 0.25). We conclude that exercise improved the efficacy of rituximab-mediated ADCC against autologous CLL cells ex vivo and propose that exercise should be explored as a means of enhancing clinical responses in patients receiving anti-CD20 immunotherapy.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Humanos , Rituximab/farmacologia , Rituximab/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Projetos Piloto , Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Monoclonais Murinos/uso terapêutico
3.
Mol Ther ; 32(2): 457-468, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38053333

RESUMO

CTLA-4 is a crucial immune checkpoint receptor involved in the maintenance of immune homeostasis, tolerance, and tumor control. Antibodies targeting CTLA-4 have been promising treatments for numerous cancers, but the mechanistic basis of their anti-tumoral immune-boosting effects is poorly understood. Although the ctla4 gene also encodes an alternatively spliced soluble variant (sCTLA-4), preclinical/clinical evaluation of anti-CTLA-4-based immunotherapies have not considered the contribution of this isoform. Here, we explore the functional properties of sCTLA-4 and evaluate the efficacy of isoform-specific anti-sCTLA-4 antibody targeting in a murine cancer model. We show that expression of sCTLA-4 by tumor cells suppresses CD8+ T cells in vitro and accelerates growth and experimental metastasis of murine tumors in vivo. These effects were accompanied by modification of the immune infiltrate, notably restraining CD8+ T cells in a non-cytotoxic state. sCTLA-4 blockade with isoform-specific antibody reversed this restraint, enhancing intratumoral CD8+ T cell activation and cytolytic potential, correlating with therapeutic efficacy and tumor control. This previously unappreciated role of sCTLA-4 suggests that the biology and function of multi-gene products of immune checkpoint receptors need to be fully elucidated for improved mechanistic understanding of cancer immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Anticorpos , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4/genética , Neoplasias/genética , Neoplasias/terapia , Isoformas de Proteínas/genética
4.
Clin Cancer Res ; 30(9): 1712-1723, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153346

RESUMO

Immunotherapy is among the most promising new treatment modalities to arise over the last two decades; antibody drugs are delivering immunotherapy to millions of patients with many different types of cancer. Initial success with antibody therapeutics came in the form of direct targeting or cytotoxic antibodies, such as rituximab and trastuzumab, which bind directly to tumor cells to elicit their destruction. These were followed by immunomodulatory antibodies that elicit antitumor responses by either stimulating immune cells or relieving tumor-mediated suppression. By far the most successful approach in the clinic to date has been relieving immune suppression, with immune checkpoint blockade now a standard approach in the treatment of many cancer types. Despite equivalent and sometimes even more impressive effects in preclinical models, agonist antibodies designed to stimulate the immune system have lagged behind in their clinical translation. In this review, we document the main receptors that have been targeted by agonist antibodies, consider the various approaches that have been evaluated to date, detail what we have learned, and consider how their anticancer potential can be unlocked.


Assuntos
Imunoterapia , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Imunoterapia/métodos , Animais , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/farmacologia
5.
Front Immunol ; 14: 1282874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022598

RESUMO

Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.


Assuntos
Leucócitos , Receptores Imunológicos , Humanos , Receptores Imunológicos/metabolismo , Células Mieloides , Imunomodulação , Imunoglobulinas
6.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834014

RESUMO

Cancer is globally increasing [...].


Assuntos
Genoma , Neoplasias , Humanos , Neoplasias/genética
7.
Leukemia ; 37(10): 2036-2049, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37528310

RESUMO

The first-in-class inhibitor of exportin-1 (XPO1) selinexor is currently under clinical investigation in combination with the BTK inhibitor ibrutinib for patients with chronic lymphocytic leukaemia (CLL) or non-Hodgkin lymphoma. Selinexor induces apoptosis of tumour cells through nuclear retention of tumour suppressor proteins and has also recently been described to modulate natural killer (NK) cell and T cell cytotoxicity against lymphoma cells. Here, we demonstrate that XPO1 inhibition enhances NK cell effector function against primary CLL cells via downregulation of HLA-E and upregulation of TRAIL death receptors DR4 and DR5. Furthermore, selinexor potentiates NK cell activation against CLL cells in combination with several approved treatments; acalabrutinib, rituximab and obinutuzumab. We further demonstrate that lymph node associated signals (IL-4 + CD40L) inhibit NK cell activation against CLL cells via upregulation of HLA-E, and that inhibition of XPO1 can overcome this protective effect. These findings allow for the design of more efficacious combination strategies to harness NK cell effector functions against CLL.


Assuntos
Antígenos de Histocompatibilidade Classe I , Hidrazinas , Carioferinas , Leucemia Linfocítica Crônica de Células B , Receptores Citoplasmáticos e Nucleares , Humanos , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Células Matadoras Naturais/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Hidrazinas/farmacologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteína Exportina 1 , Antígenos HLA-E
9.
Nat Immunol ; 24(8): 1244-1255, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414906

RESUMO

Humoral immune responses are characterized by complex mixtures of polyclonal antibody species varying in their isotype, target epitope specificity and affinity. Posttranslational modifications occurring during antibody production in both the antibody variable and constant domain create further complexity and can modulate antigen specificity and antibody Fc-dependent effector functions, respectively. Finally, modifications of the antibody backbone after secretion may further impact antibody activity. An in-depth understanding of how these posttranslational modifications impact antibody function, especially in the context of individual antibody isotypes and subclasses, is only starting to emerge. Indeed, only a minute proportion of this natural variability in the humoral immune response is currently reflected in therapeutic antibody preparations. In this Review, we summarize recent insights into how IgG subclass and posttranslational modifications impact IgG activity and discuss how these insights may be used to optimize therapeutic antibody development.


Assuntos
Imunoglobulina G , Imunoterapia , Epitopos
11.
Front Immunol ; 14: 1147467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180119

RESUMO

The tumor necrosis factor superfamily (TNFSF) and their receptors (TNFRSF) are important regulators of the immune system, mediating proliferation, survival, differentiation, and function of immune cells. As a result, their targeting for immunotherapy is attractive, although to date, under-exploited. In this review we discuss the importance of co-stimulatory members of the TNFRSF in optimal immune response generation, the rationale behind targeting these receptors for immunotherapy, the success of targeting them in pre-clinical studies and the challenges in translating this success into the clinic. The efficacy and limitations of the currently available agents are discussed alongside the development of next generation immunostimulatory agents designed to overcome current issues, and capitalize on this receptor class to deliver potent, durable and safe drugs for patients.


Assuntos
Neoplasias , Humanos , Receptores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa , Sistema Imunitário/patologia , Imunoterapia
12.
J Immunol ; 210(11): 1837-1848, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37093649

RESUMO

The classical complement system represents a central effector mechanism of Abs initiated by the binding of C1q to target bound IgG. Human C1q contains six heterotrimeric globular head groups that mediate IgG interaction, resulting in an avidity-driven binding event involving multiple IgG molecules binding a single C1q. Accordingly, surface bound IgG molecules are thought to assemble into noncovalent hexameric rings for optimal binding to the six-headed C1q. To study the C1q-Fc interaction of various Abs and screen for altered C1q binding mutants, we developed, to our knowledge, a novel HPLC-based method. Employing a single-chain form of C1q representing one C1q head group, our HPLC methodology was able to detect the interaction between the single-chain monomeric form of C1q and various ligands. We show that, despite a narrow window of specific binding owing to the low affinity of the monomeric C1q-IgG interaction, this approach clearly distinguished between IgG subclasses with established C1q binding properties. IgG3 displayed the strongest binding, followed by IgG1, with IgG2 and IgG4 showing the weakest binding. Fc mutants known to have increased C1q binding through oligomerization or enhanced C1q interaction showed greatly increased column retention, and IgG glycovariants displayed a consistent trend of increasing retention upon increasing galactosylation and sialylation. Furthermore, the column retention of IgG isotypes and glycovariants matches both the cell surface recruitment of C1q and complement-mediated cytotoxicity induced by each variant on an anti-CD20 Ab backbone. This methodology therefore provides a valuable tool for testing IgG Ab (glyco)variants for C1q binding, with clear relevance for therapeutic Ab development.


Assuntos
Complemento C1q , Imunoglobulina G , Humanos , Complemento C1q/metabolismo , Imunoglobulina G/metabolismo , Proteínas do Sistema Complemento , Cromatografia de Afinidade
13.
Nature ; 614(7948): 539-547, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725933

RESUMO

Antibody responses during infection and vaccination typically undergo affinity maturation to achieve high-affinity binding for efficient neutralization of pathogens1,2. Similarly, high affinity is routinely the goal for therapeutic antibody generation. However, in contrast to naturally occurring or direct-targeting therapeutic antibodies, immunomodulatory antibodies, which are designed to modulate receptor signalling, have not been widely examined for their affinity-function relationship. Here we examine three separate immunologically important receptors spanning two receptor superfamilies: CD40, 4-1BB and PD-1. We show that low rather than high affinity delivers greater activity through increased clustering. This approach delivered higher immune cell activation, in vivo T cell expansion and antitumour activity in the case of CD40. Moreover, an inert anti-4-1BB monoclonal antibody was transformed into an agonist. Low-affinity variants of the clinically important antagonistic anti-PD-1 monoclonal antibody nivolumab also mediated more potent signalling and affected T cell activation. These findings reveal a new paradigm for augmenting agonism across diverse receptor families and shed light on the mechanism of antibody-mediated receptor signalling. Such affinity engineering offers a rational, efficient and highly tuneable solution to deliver antibody-mediated receptor activity across a range of potencies suitable for translation to the treatment of human disease.


Assuntos
Anticorpos Monoclonais , Afinidade de Anticorpos , Imunomodulação , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antígenos CD40/efeitos dos fármacos , Antígenos CD40/imunologia , Imunomodulação/efeitos dos fármacos , Imunomodulação/imunologia , Nivolumabe/imunologia , Nivolumabe/farmacologia
14.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834647

RESUMO

In our recent work, we observed that triple-negative breast cancer MDA-MB-231 cells respond to doxorubicin (DOX) via "mitotic slippage" (MS), discarding cytosolic damaged DNA during the process that provides their resistance to this genotoxic treatment. We also noted two populations of polyploid giant cells: those budding surviving offspring, versus those reaching huge ploidy by repeated MS and persisting for several weeks. Their separate roles in the recovery from treatment remained unclear. The current study was devoted to characterising the origin and relationship of these two sub-populations in the context of MS. MS was hallmarked by the emergence of nuclear YAP1/OCT4A/MOS/EMI2-positivity featuring a soma-germ transition to the meiotic-metaphase-arrested "maternal germ cell". In silico, the link between modules identified in the inflammatory innate immune response to cytosolic DNA and the reproductive module of female pregnancy (upregulating placenta developmental genes) was observed in polyploid giant cells. Asymmetry of the two subnuclei types, one repairing DNA and releasing buds enriched by CDC42/ACTIN/TUBULIN and the other persisting and degrading DNA in a polyploid giant cell, was revealed. We propose that when arrested in MS, a "maternal cancer germ cell" may be parthenogenetically stimulated by the placental proto-oncogene parathyroid-hormone-like-hormone, increasing calcium, thus creating a "female pregnancy-like" system within a single polyploid giant cancer cell.


Assuntos
Neoplasias , Placenta , Feminino , Gravidez , Humanos , Células Gigantes , Poliploidia , DNA , Hormônios
15.
Sci Immunol ; 7(73): eabm3723, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857577

RESUMO

Antibodies protect from infection, underpin successful vaccines and elicit therapeutic responses in otherwise untreatable cancers and autoimmune conditions. The human IgG2 isotype displays a unique capacity to undergo disulfide shuffling in the hinge region, leading to modulation of its ability to drive target receptor signaling (agonism) in a variety of important immune receptors, through hitherto unexplained molecular mechanisms. To address the underlying process and reveal how hinge disulfide orientation affects agonistic activity, we generated a series of cysteine to serine exchange variants in the hinge region of the clinically relevant monoclonal antibody ChiLob7/4, directed against the key immune receptor CD40. We report how agonistic activity varies with disulfide pattern and is afforded by the presence of a disulfide crossover between F(ab) arms in the agonistic forms, independently of epitope, as observed in the determined crystallographic structures. This structural "switch" affects directly on antibody conformation and flexibility. Small-angle x-ray scattering and ensemble modeling demonstrated that the least flexible variants adopt the fewest conformations and evoke the highest levels of receptor agonism. This covalent change may be amenable for broad implementation to modulate receptor signaling in an epitope-independent manner in future therapeutics.


Assuntos
Dissulfetos , Imunoglobulina G , Anticorpos Monoclonais , Dissulfetos/química , Epitopos , Humanos , Conformação Proteica
16.
Cell Rep ; 40(3): 111099, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858562

RESUMO

Many therapeutic antibodies deplete target cells and elicit immunotherapy by engaging activating Fc gamma receptors (FcγRs) on host effector cells. These antibodies are negatively regulated by the inhibitory FcγRIIB (CD32B). Dogma suggests inhibition is mediated through the FcγRIIB immunoreceptor tyrosine-based inhibition motif (ITIM), negatively regulating immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling from activating FcγR. To assess this, we generated experimental models expressing human (h)FcγRIIB on targets or effectors, lacking or retaining ITIM signaling capacity. We demonstrate that signaling through the hFcγRIIB ITIM is dispensable for impairing monoclonal antibody (mAb)-mediated depletion of normal and malignant murine target cells through three therapeutically relevant surface receptors (CD20, CD25, and OX40) affecting immunotherapy. We demonstrate that hFcγRIIB competition with activating FcγRs for antibody Fc, rather than ITIM signaling, is sufficient to impair activating FcγR engagement, inhibiting effector function and immunotherapy.


Assuntos
Anticorpos Monoclonais , Receptores de IgG/imunologia , Animais , Humanos , Imunoterapia , Camundongos , Receptores de IgG/metabolismo , Transdução de Sinais
17.
J Immunol ; 209(2): 379-390, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35768150

RESUMO

NK cells are promising cellular therapeutics against hematological and solid malignancies. Immunogenetic studies have identified that various activating killer cell Ig-like receptors (KIRs) are associated with cancer outcomes. Specifically, KIR2DS2 has been associated with reduced incidence of relapse following transplant in hematological malignancies and improved outcomes in solid tumors, but the mechanism remains obscure. Therefore, we investigated how KIR2DS2 expression impacts NK cell function. Using a novel flow cytometry panel, we show that human NK cells with high KIR2DS2 expression have enhanced spontaneous activation against malignant B cell lines, liver cancer cell lines, and primary chronic lymphocytic leukemia cells. Surface expression of CD16 was increased on KIR2DS2high NK cells, and, accordingly, KIR2DS2high NK cells had increased activation against lymphoma cells coated with the clinically relevant anti-CD20 Abs rituximab and obinutuzumab. Bulk RNA sequencing revealed that KIR2DS2high NK cells have upregulation of NK-mediated cytotoxicity, translation, and FCGR gene pathways. We developed a novel single-cell RNA-sequencing technique to identify KIR2DS2+ NK cells, and this confirmed that KIR2DS2 is associated with enhanced NK cell-mediated cytotoxicity. This study provides evidence that KIR2DS2 marks a population of NK cells primed for anticancer activity and indicates that KIR2DS2 is an attractive target for NK-based therapeutic strategies.


Assuntos
Células Matadoras Naturais , Receptores KIR , Antígenos CD20/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Células Matadoras Naturais/metabolismo , Receptores KIR/genética , Receptores KIR/metabolismo , Rituximab/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico
19.
J Exp Clin Cancer Res ; 41(1): 131, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392965

RESUMO

BACKGROUND: Hypoxia is a hallmark of the tumor microenvironment (TME) and in addition to altering metabolism in cancer cells, it transforms tumor-associated stromal cells. Within the tumor stromal cell compartment, tumor-associated macrophages (TAMs) provide potent pro-tumoral support. However, TAMs can also be harnessed to destroy tumor cells by monoclonal antibody (mAb) immunotherapy, through antibody dependent cellular phagocytosis (ADCP). This is mediated via antibody-binding activating Fc gamma receptors (FcγR) and impaired by the single inhibitory FcγR, FcγRIIb. METHODS: We applied a multi-OMIC approach coupled with in vitro functional assays and murine tumor models to assess the effects of hypoxia inducible factor (HIF) activation on mAb mediated depletion of human and murine cancer cells. For mechanistic assessments, siRNA-mediated gene silencing, Western blotting and chromatin immune precipitation were utilized to assess the impact of identified regulators on FCGR2B gene transcription. RESULTS: We report that TAMs are FcγRIIbbright relative to healthy tissue counterparts and under hypoxic conditions, mononuclear phagocytes markedly upregulate FcγRIIb. This enhanced FcγRIIb expression is transcriptionally driven through HIFs and Activator protein 1 (AP-1). Importantly, this phenotype reduces the ability of macrophages to eliminate anti-CD20 monoclonal antibody (mAb) opsonized human chronic lymphocytic leukemia cells in vitro and EL4 lymphoma cells in vivo in human FcγRIIb+/+ transgenic mice. Furthermore, post-HIF activation, mAb mediated blockade of FcγRIIb can partially restore phagocytic function in human monocytes. CONCLUSION: Our findings provide a detailed molecular and cellular basis for hypoxia driven resistance to antitumor mAb immunotherapy, unveiling a hitherto unexplored aspect of the TME. These findings provide a mechanistic rationale for the modulation of FcγRIIb expression or its blockade as a promising strategy to enhance approved and novel mAb immunotherapies.


Assuntos
Leucemia Linfocítica Crônica de Células B , Receptores de IgG , Animais , Anticorpos Monoclonais/farmacologia , Humanos , Hipóxia/metabolismo , Imunoterapia , Leucemia Linfocítica Crônica de Células B/metabolismo , Macrófagos/metabolismo , Camundongos , Receptores de IgG/genética , Receptores de IgG/metabolismo , Microambiente Tumoral
20.
Commun Biol ; 5(1): 229, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288635

RESUMO

Agonistic CD27 monoclonal antibodies (mAb) have demonstrated impressive anti-tumour efficacy in multiple preclinical models but modest clinical responses. This might reflect current reagents delivering suboptimal CD27 agonism. Here, using a novel panel of CD27 mAb including a clinical candidate, we investigate the determinants of CD27 mAb agonism. Epitope mapping and in silico docking analysis show that mAb binding to membrane-distal and external-facing residues are stronger agonists. However, poor epitope-dependent agonism could partially be overcome by Fc-engineering, using mAb isotypes that promote receptor clustering, such as human immunoglobulin G1 (hIgG1, h1) with enhanced affinity to Fc gamma receptor (FcγR) IIb, or hIgG2 (h2). This study provides the critical knowledge required for the development of agonistic CD27 mAb that are potentially more clinically efficacious.


Assuntos
Antineoplásicos Imunológicos , Neoplasias , Anticorpos Monoclonais/química , Antineoplásicos Imunológicos/uso terapêutico , Análise por Conglomerados , Epitopos , Humanos , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...