Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 195: 115517, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690405

RESUMO

Mangrove environments have been well recognized as marine litter traps. However, it is unclear whether mangrove sediments sink microplastics more effectively than other marine sediments due to active sedimentation. Furthermore, microplastics archives in mangrove sediments may provide quantitative data on the impact of human activities on environmental pollution throughout history. Microplastic abundance varied markedly between high and low anthropogenic activities. Both mangrove and adjacent mudflats sediments act as microplastic sequesters, despite having similar microplastic abundances and depth profiles. The decreasing trend of microplastics was observed until the sediment layers dated to the first-time plastic was manufactured in Indonesia, in the early 1950s, but microplastics remained present beneath those layers, indicating the downward movements. This discovery highlighted the significance of mangrove sediments as microplastic sinks. More research is needed to understand the mechanisms of microplastic deposition in sediments, as well as their fate and potential impact on mangrove sediment dwellers.

2.
Environ Pollut ; 337: 122602, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37741539

RESUMO

Studies consistently ranked the Philippines as one of the top contributors of plastic wastes leaking into the ocean. However, most of these were based on probabilities and estimates due to lack of comprehensive ground-truth data, resulting also in the limited understanding of the contributing factors and drivers of local pollution. This makes it challenging to develop science-driven and locally-contextualized policies and interventions to mitigate the problem. Here, 56 sites from different coastal habitats in the western Philippine archipelago were surveyed for macroplastics standing stock, representing geographic regions with varying demography and economic activities. Clustering of sites revealed three potential influencing factors to plastic accumulation: population density, wind and oceanic transport, and habitat type. Notably, the amount and types of dominant plastics per geographic region varied significantly. Single-use plastics (food packaging and sachets) were the most abundant in sites adjacent to densely populated and highly urbanized areas (Manila Bay and eastern Palawan), while fishing-related materials dominated in less populated and fishing-dominated communities (western Palawan and Bolinao), suggesting the local industries significantly contributing to the mismanaged plastics in the surveyed sites. Meanwhile, isolated areas such as islands were characterized by the abundance of buoyant materials (drinking bottles and hygiene product containers), emphasizing the role of oceanic transport and strong connectivity in the oceans. Exposure assessment also identified single-use and fishing-related plastics to be of "high exposure (Type 4)" due to their high abundance and high occurrence. These increase their chances of encountering and interacting with organisms and habitats, thus, resulting into more potential harm. This study is the first comprehensive work done in western Philippines, and results will help contextualize local pollution, facilitating more effective management and policymaking.


Assuntos
Ecossistema , Plásticos , Filipinas , Poluição Ambiental , Oceanos e Mares , Monitoramento Ambiental/métodos , Resíduos/análise
4.
Nat Commun ; 13(1): 3753, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798724

RESUMO

The biomaterial with the highest known tensile strength is a unique composite of chitin and goethite (α-FeO(OH)) present in teeth from the Common Limpet (Patella vulgata). A biomimetic based on limpet tooth, with corresponding high-performance mechanical properties is highly desirable. Here we report on the replication of limpet tooth developmental processes ex vivo, where isolated limpet tissue and cells in culture generate new biomimetic structures. Transcriptomic analysis of each developmental stage of the radula, the organ from which limpet teeth originate, identifies sequential changes in expression of genes related to chitin and iron processing. We quantify iron and chitin metabolic processes in the radula and grow isolated radula cells in vitro. Bioinspired material can be developed with electrospun chitin mineralised by conditioned media from cultured radula cells. Our results inform molecular processes behind the generation of limpet tooth and establish a platform for development of a novel biomimetic with comparable properties.


Assuntos
Gastrópodes , Dente , Animais , Materiais Biocompatíveis , Biomimética , Quitina/química , Ferro
5.
Mar Pollut Bull ; 181: 113926, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35841674

RESUMO

To reduce microplastic contamination in the environment, we need to better understand its sources and transit, especially from land to sea. This study examines microplastic contamination in Jakarta's nine river outlets. Microplastics were found in all sampling intervals and areas, ranging from 4.29 to 23.49 particles m-3. The trend of microplastic contamination tends to increase as the anthropogenic activity towards Jakarta Bay from the eastern side of the bay. Our study found a link between rainfall and the abundance of microplastic particles in all river outlets studied. This investigation found polyethylene, polystyrene, and polypropylene in large proportion due to their widespread use in normal daily life and industrial applications. Our research observed an increase in microplastic fibers made of polypropylene over time. We suspect a relationship between COVID-19 PPE waste and microplastic shift in our study area. More research is needed to establish how and where microplastics enter rivers.


Assuntos
COVID-19 , Poluentes Químicos da Água , Baías , COVID-19/epidemiologia , Surtos de Doenças , Monitoramento Ambiental , Humanos , Indonésia , Microplásticos , Plásticos , Polipropilenos , Rios , Estações do Ano , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 841: 156704, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35718174

RESUMO

Southeast Asia is considered to have some of the highest levels of marine plastic pollution in the world. It is therefore vitally important to increase our understanding of the impacts and risks of plastic pollution to marine ecosystems and the essential services they provide to support the development of mitigation measures in the region. An interdisciplinary, international network of experts (Australia, Indonesia, Ireland, Malaysia, the Philippines, Singapore, Thailand, the United Kingdom, and Vietnam) set a research agenda for marine plastic pollution in the region, synthesizing current knowledge and highlighting areas for further research in Southeast Asia. Using an inductive method, 21 research questions emerged under five non-predefined key themes, grouping them according to which: (1) characterise marine plastic pollution in Southeast Asia; (2) explore its movement and fate across the region; (3) describe the biological and chemical modifications marine plastic pollution undergoes; (4) detail its environmental, social, and economic impacts; and, finally, (5) target regional policies and possible solutions. Questions relating to these research priority areas highlight the importance of better understanding the fate of marine plastic pollution, its degradation, and the impacts and risks it can generate across communities and different ecosystem services. Knowledge of these aspects will help support actions which currently suffer from transboundary problems, lack of responsibility, and inaction to tackle the issue from its point source in the region. Being profoundly affected by marine plastic pollution, Southeast Asian countries provide an opportunity to test the effectiveness of innovative and socially inclusive changes in marine plastic governance, as well as both high and low-tech solutions, which can offer insights and actionable models to the rest of the world.


Assuntos
Ecossistema , Plásticos , Sudeste Asiático , Monitoramento Ambiental , Poluição Ambiental , Filipinas , Resíduos/análise
7.
J Vis Exp ; (179)2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35156659

RESUMO

Wood-boring invertebrates rapidly destroy marine timbers and wooden coastal infrastructure, causing billions of dollars of damage around the globe every year. As treatments of wood with broad spectrum biocides, such as creosote and chromated copper arsenate (CCA), are now restricted in marine use by legislation, naturally durable timber species and novel preservation methods of wood are required. These methods undergo testing in order to meet regulatory standards, such as the European standard for testing wood preservatives against marine borers, EN 275. Initial investigation of durable timbers species or wood preservative treatments can be achieved quickly and inexpensively through laboratory testing, which offers many advantages over marine field trials that are typically costly, long-term endeavours. Many species of Limnoria (gribble) are marine wood-boring crustaceans. Limnoria are ideal for use in laboratory testing of biodegradation of wood by marine wood-borers, due to the practicality of rearing them in aquaria and the ease of measuring their feeding rates on wood. Herein, we outline a standardizable laboratory test for assessing wood biodegradation using gribble.


Assuntos
Desinfetantes , Madeira , Animais , Cobre/análise , Desinfetantes/análise , Invertebrados , Madeira/química
8.
BMC Biol ; 19(1): 233, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724941

RESUMO

BACKGROUND: Shipworms are marine xylophagus bivalve molluscs, which can live on a diet solely of wood due to their ability to produce plant cell wall-degrading enzymes. Bacterial carbohydrate-active enzymes (CAZymes), synthesised by endosymbionts living in specialised shipworm cells called bacteriocytes and located in the animal's gills, play an important role in wood digestion in shipworms. However, the main site of lignocellulose digestion within these wood-boring molluscs, which contains both endogenous lignocellulolytic enzymes and prokaryotic enzymes, is the caecum, and the mechanism by which bacterial enzymes reach the distant caecum lumen has remained so far mysterious. Here, we provide a characterisation of the path through which bacterial CAZymes produced in the gills of the shipworm Lyrodus pedicellatus reach the distant caecum to contribute to the digestion of wood. RESULTS: Through a combination of transcriptomics, proteomics, X-ray microtomography, electron microscopy studies and in vitro biochemical characterisation, we show that wood-digesting enzymes produced by symbiotic bacteria are localised not only in the gills, but also in the lumen of the food groove, a stream of mucus secreted by gill cells that carries food particles trapped by filter feeding to the mouth. Bacterial CAZymes are also present in the crystalline style and in the caecum of their shipworm host, suggesting a unique pathway by which enzymes involved in a symbiotic interaction are transported to their site of action. Finally, we characterise in vitro four new bacterial glycosyl hydrolases and a lytic polysaccharide monooxygenase identified in our transcriptomic and proteomic analyses as some of the major bacterial enzymes involved in this unusual biological system. CONCLUSION: Based on our data, we propose that bacteria and their enzymes are transported from the gills along the food groove to the shipworm's mouth and digestive tract, where they aid in wood digestion.


Assuntos
Bivalves , Proteômica , Animais , Bactérias , Filogenia , Simbiose
9.
Zootaxa ; 5026(4): 480-506, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34810920

RESUMO

Ten species of fiddler crab are reported inhabiting the intertidal zone of a shore on Kaledupa Island, Indonesia. This is one of the highest recorded numbers of fiddler crab species living in sympatry, equating to over two-thirds of those known from the Wallacea biogeographic region and more than half of all those recorded from Indonesia. The descriptions to identify and distinguish these ten species are provided using a suite of characters e.g., carapace, major cheliped, male gonopods, gastric mills, life colouration in males and females, and notes on their ecology and distribution. Specimens were observed and collected in the Wakatobi National Park, near the village of Ambeua on Kaledupa island, Sulawesi Tenggara, Indonesia. Gastric mills are described for the first time for Gelasimus jocelynae, Paraleptuca crassipes, Tubuca coarctata, T. demani and T. dussumieri. A tabulation of anatomical features and colouration for all species in this study is provided as a support for field studies. It identifies features that support the recently proposed taxonomic revision of fiddler crabs by Shih et al. (2016).


Assuntos
Braquiúros , Decápodes , Animais , Ecossistema , Feminino , Masculino , Simpatria
10.
Sci Total Environ ; 763: 143004, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33158516

RESUMO

Mangroves are located at the land-sea interface and are therefore confronted with human settlement in the coastal areas and associated pressures and uses. This unique habitat provides important ecosystem services to coastal communities worldwide, but the global decline of their surface area and their degradation over the past decades has put coastal communities even more at risk from the effects of climate change. This paper aims to present the first ecosystem services valuation of the mangroves of the French overseas Territories. We provide the economic value of mangroves for coastal protection, carbon sequestration, water purification and fish biomass production. We coupled a geospatial analysis of mangrove's distribution with the characterisation of land artificialisation behind mangroves. Then we developed a vulnerability index based on multiple indicators of exposure to environmental and anthropogenic stressors, mangroves' sensitivity to pressures, and mangroves' adaptive capacity to adjust their production functions accordingly. We estimated the monetary value of regulation and support services provided by mangroves in French overseas territories to be on average EUR 1.6 billion annually, 60% of which is carbon sequestration, 28% coastal protection, 7% water purification and 6% fish biomass production. When considering mangroves services without the vulnerability adjustment, the total value for those services would reach EUR 2 billion per year. Although much of the spatio-temporal variability in mangrove functioning could not be considered given the spatial scale of our study, these results demonstrate the value and socio-economic importance of mangroves to face and adapt from the effects of coastal change, at local and national scales, but also highlight the loss of services due to their vulnerability. This paper emphasises on the value of ecosystem services provided by mangroves to face coastal change so that a service-based approach to conservation would plead for increased national investment into their protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA