Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Oncol ; 34: 101709, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302348

RESUMO

Background: Data regarding outcomes among patients with cancer and co-morbid cardiovascular disease (CVD)/cardiovascular risk factors (CVRF) after SARS-CoV-2 infection are limited. Objectives: To compare Coronavirus disease 2019 (COVID-19) related complications among cancer patients with and without co-morbid CVD/CVRF. Methods: Retrospective cohort study of patients with cancer and laboratory-confirmed SARS-CoV-2, reported to the COVID-19 and Cancer Consortium (CCC19) registry from 03/17/2020 to 12/31/2021. CVD/CVRF was defined as established CVD or no established CVD, male ≥ 55 or female ≥ 60 years, and one additional CVRF. The primary endpoint was an ordinal COVID-19 severity outcome including need for hospitalization, supplemental oxygen, intensive care unit (ICU), mechanical ventilation, ICU or mechanical ventilation plus vasopressors, and death. Secondary endpoints included incident adverse CV events. Ordinal logistic regression models estimated associations of CVD/CVRF with COVID-19 severity. Effect modification by recent cancer therapy was evaluated. Results: Among 10,876 SARS-CoV-2 infected patients with cancer (median age 65 [IQR 54-74] years, 53% female, 52% White), 6253 patients (57%) had co-morbid CVD/CVRF. Co-morbid CVD/CVRF was associated with higher COVID-19 severity (adjusted OR: 1.25 [95% CI 1.11-1.40]). Adverse CV events were significantly higher in patients with CVD/CVRF (all p<0.001). CVD/CVRF was associated with worse COVID-19 severity in patients who had not received recent cancer therapy, but not in those undergoing active cancer therapy (OR 1.51 [95% CI 1.31-1.74] vs. OR 1.04 [95% CI 0.90-1.20], pinteraction <0.001). Conclusions: Co-morbid CVD/CVRF is associated with higher COVID-19 severity among patients with cancer, particularly those not receiving active cancer therapy. While infrequent, COVID-19 related CV complications were higher in patients with comorbid CVD/CVRF. (COVID-19 and Cancer Consortium Registry [CCC19]; NCT04354701).

2.
J Immunother Cancer ; 10(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36328378

RESUMO

BACKGROUND: Metformin slows tumor growth and progression in vitro, and in combination with chemoradiotherapy, resulted in high overall survival in patients with head and neck cancer squamous cell carcinoma (HNSCC) in our phase 1 clinical trial (NCT02325401). Metformin is also postulated to activate an antitumor immune response. Here, we investigate immunologic effects of metformin on natural killer (NK) and natural killer T cells, including results from two phase I open-label studies in patients with HNSCC treated with metformin (NCT02325401, NCT02083692). METHODS: Peripheral blood was collected before and after metformin treatment or from newly diagnosed patients with HNSCC. Peripheral immune cell phenotypes were evaluated using flow cytometry, cytokine expression by ELISA and/or IsoLight, and NK cell-mediated cytotoxicity was determined with a flow-based NK cell cytotoxicity assay (NKCA). Patient tumor immune infiltration before and after metformin treatment was analyzed with immunofluorescence. NK cells were treated with either vehicle or metformin and analyzed by RNA sequencing (RNA-seq). NK cells were then treated with inhibitors of significant pathways determined by RNA-seq and analyzed by NKCA, ELISA, and western blot analyses. RESULTS: Increased peripheral NK cell activated populations were observed in patients treated with metformin. NK cell tumor infiltration was enhanced in patients with HNSCC treated with metformin preoperatively. Metformin increased antitumorigenic cytokines ex vivo, including significant increases in perforin. Metformin increased HNSCC NK cell cytotoxicity and inhibited the CXCL1 pathway while stimulating the STAT1 pathway within HNSCC NK cells. Exogenous CXCL1 prevented metformin-enhanced NK cell-mediated cytotoxicity. Metformin-mediated NK cell cytotoxicity was found to be AMP-activated protein kinase independent, but dependent on both mechanistic target of rapamycin and pSTAT1. CONCLUSIONS: Our data identifies a new role for metformin-mediated immune antitumorigenic function through NK cell-mediated cytotoxicity and downregulation of CXCL1 in HNSCC. These findings will inform future immunomodulating therapies in HNSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Metformina , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Células Matadoras Naturais , Citocinas/metabolismo , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...