Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
NPJ Syst Biol Appl ; 10(1): 91, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155294

RESUMO

Glioblastoma is the most common and deadliest brain tumour in adults, with a median survival of 15 months under the current standard of care. Immunotherapies like immune checkpoint inhibitors and oncolytic viruses have been extensively studied to improve this endpoint. However, most thus far have failed. To improve the efficacy of immunotherapies to treat glioblastoma, new single-cell imaging modalities like imaging mass cytometry can be leveraged and integrated with computational models. This enables a better understanding of the tumour microenvironment and its role in treatment success or failure in this hard-to-treat tumour. Here, we implemented an agent-based model that allows for spatial predictions of combination chemotherapy, oncolytic virus, and immune checkpoint inhibitors against glioblastoma. We initialised our model with patient imaging mass cytometry data to predict patient-specific responses and found that oncolytic viruses drive combination treatment responses determined by intratumoral cell density. We found that tumours with higher tumour cell density responded better to treatment. When fixing the number of cancer cells, treatment efficacy was shown to be a function of CD4 + T cell and, to a lesser extent, of macrophage counts. Critically, our simulations show that care must be put into the integration of spatial data and agent-based models to effectively capture intratumoral dynamics. Together, this study emphasizes the use of predictive spatial modelling to better understand cancer immunotherapy treatment dynamics, while highlighting key factors to consider during model design and implementation.


Assuntos
Neoplasias Encefálicas , Simulação por Computador , Glioblastoma , Imunoterapia , Microambiente Tumoral , Glioblastoma/terapia , Glioblastoma/imunologia , Humanos , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia
2.
bioRxiv ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39131351

RESUMO

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in millions of deaths globally. Adults with immunosuppression (e.g., solid organ transplant recipients) and those undergoing active cancer treatments experience worse infections and more severe COVID-19. It is difficult to conduct clinical studies in these populations, resulting in a restricted amount of data that can be used to relate mechanisms of immune dysfunction to COVID-19 outcomes in these vulnerable groups. To study immune dynamics after infection with SARS-CoV-2 and to investigate drivers of COVID-19 severity in individuals with cancer and immunosuppression, we adapted our mathematical model of the immune response during COVID-19 and generated virtual patient cohorts of cancer and immunosuppressed patients. The cohorts of plausible patients recapitulated available longitudinal clinical data collected from patients in Montréal, Canada area hospitals. Our model predicted that both cancer and immunosuppressed virtual patients with severe COVID-19 had decreased CD8+ T cells, elevated interleukin-6 concentrations, and delayed type I interferon peaks compared to those with mild COVID-19 outcomes. Additionally, our results suggest that cancer patients experience higher viral loads (however, with no direct relation with severity), likely because of decreased initial neutrophil counts (i.e., neutropenia), a frequent toxic side effect of anti-cancer therapy. Furthermore, severe cancer and immunosuppressed virtual patients suffered a high degree of tissue damage associated with elevated neutrophils. Lastly, parameter values associated with monocyte recruitment by infected cells were found to be elevated in severe cancer and immunosuppressed patients with respect to the COVID-19 reference group. Together, our study highlights that dysfunction in type I interferon and CD8+ T cells are key drivers of immune dysregulation in COVID-19, particularly in cancer patients and immunosuppressed individuals.

3.
Leuk Res ; 140: 107485, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579483

RESUMO

Over the years, the overall survival of older patients diagnosed with acute myeloid leukemia (AML) has not significantly increased. Although standard cytotoxic therapies that rapidly eliminate dividing myeloblasts are used to induce remission, relapse can occur due to surviving therapy-resistant leukemic stem cells (LSCs). Hence, anti-LSC strategies have become a key target to cure AML. We have recently shown that previously approved cardiac glycosides and glucocorticoids target LSC-enriched CD34+ cells in the primary human AML 8227 model with more efficacy than normal hematopoietic stem cells (HSCs). To translate these in vitro findings into humans, we developed a mathematical model of stem cell dynamics that describes the stochastic evolution of LSCs in AML post-standard-of-care. To this, we integrated population pharmacokinetic-pharmacodynamic (PKPD) models to investigate the clonal reduction potential of several promising candidate drugs in comparison to cytarabine, which is commonly used in high doses for consolidation therapy in AML patients. Our results suggest that cardiac glycosides (proscillaridin A, digoxin and ouabain) and glucocorticoids (budesonide and mometasone) reduce the expansion of LSCs through a decrease in their viability. While our model predicts that effective doses of cardiac glycosides are potentially too toxic to use in patients, simulations show the possibility of mometasone to prevent relapse through the glucocorticoid's ability to drastically reduce LSC population size. This work therefore highlights the prospect of these treatments for anti-LSC strategies and underlines the use of quantitative approaches to preclinical drug translation in AML.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Modelos Teóricos , Citarabina/uso terapêutico , Citarabina/farmacologia
4.
Bull Math Biol ; 86(5): 56, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625656

RESUMO

Mathematical modelling applied to preclinical, clinical, and public health research is critical for our understanding of a multitude of biological principles. Biology is fundamentally heterogeneous, and mathematical modelling must meet the challenge of variability head on to ensure the principles of diversity, equity, and inclusion (DEI) are integrated into quantitative analyses. Here we provide a follow-up perspective on the DEI plenary session held at the 2023 Society for Mathematical Biology Annual Meeting to discuss key issues for the increased integration of DEI in mathematical modelling in biology.


Assuntos
Diversidade, Equidade, Inclusão , Saúde Pública , Conceitos Matemáticos , Modelos Biológicos
5.
Bull Math Biol ; 86(5): 44, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512541

RESUMO

On July 19th, 2023, the National Institute of Allergy and Infectious Diseases co-organized a workshop with the Society of Mathematical Biology, with the authors of this paper as the organizing committee. The workshop, "Bridging multiscale modeling and practical clinical applications in infectious diseases" sought to create an environment for mathematical modelers, statisticians, and infectious disease researchers and clinicians to exchange ideas and perspectives.


Assuntos
Doenças Transmissíveis , Conceitos Matemáticos , Estados Unidos , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Modelos Biológicos
6.
Viruses ; 16(3)2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543708

RESUMO

Throughout the SARS-CoV-2 pandemic, several variants of concern (VOCs) have been identified, many of which share recurrent mutations in the spike glycoprotein's receptor-binding domain (RBD). This region coincides with known epitopes and can therefore have an impact on immune escape. Protracted infections in immunosuppressed patients have been hypothesized to lead to an enrichment of such mutations and therefore drive evolution towards VOCs. Here, we present the case of an immunosuppressed patient that developed distinct populations with immune escape mutations throughout the course of their infection. Notably, by investigating the co-occurrence of substitutions on individual sequencing reads in the RBD, we found quasispecies harboring mutations that confer resistance to known monoclonal antibodies (mAbs) such as S:E484K and S:E484A. These mutations were acquired without the patient being treated with mAbs nor convalescent sera and without them developing a detectable immune response to the virus. We also provide additional evidence for a viral reservoir based on intra-host phylogenetics, which led to a viral substrain that evolved elsewhere in the patient's body, colonizing their upper respiratory tract (URT). The presence of SARS-CoV-2 viral reservoirs can shed light on protracted infections interspersed with periods where the virus is undetectable, and potential explanations for long-COVID cases.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Síndrome de COVID-19 Pós-Aguda , Soroterapia para COVID-19 , Hospedeiro Imunocomprometido , Anticorpos Monoclonais , Mutação , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais , Anticorpos Neutralizantes
7.
Clin Transl Immunology ; 12(11): e1468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020729

RESUMO

Objectives: Identifying biomarkers causing differential SARS-CoV-2 infection kinetics associated with severe COVID-19 is fundamental for effective diagnostics and therapeutic planning. Methods: In this work, we applied mathematical modelling to investigate the relationships between patient characteristics, plasma SARS-CoV-2 RNA dynamics and COVID-19 severity. Using a straightforward mathematical model of within-host viral kinetics, we estimated key model parameters from serial plasma viral RNA (vRNA) samples from 256 hospitalised COVID-19+ patients. Results: Our model predicted that clearance rates distinguish key differences in plasma vRNA kinetics and severe COVID-19. Moreover, our analyses revealed a strong correlation between plasma vRNA kinetics and plasma receptor for advanced glycation end products (RAGE) concentrations (a plasma biomarker of lung damage), collected in parallel to plasma vRNA from patients in our cohort, suggesting that RAGE can substitute for viral plasma shedding dynamics to prospectively classify seriously ill patients. Conclusion: Overall, our study identifies factors of COVID-19 severity, supports interventions to accelerate viral clearance and underlines the importance of mathematical modelling to better understand COVID-19.

8.
Cancer Biol Ther ; 24(1): 2283926, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38010777

RESUMO

The development of new cancer therapies requires multiple rounds of validation from in vitro and in vivo experiments before they can be considered for clinical trials. Mathematical models assist in this preclinical phase by combining experimental data with human parameters to provide guidance about potential therapeutic regimens to bring forward into trials. However, granulosa cell tumors of the ovary lack a relevant mouse model, complexifying preclinical drug development for this rare tumor. To bridge this gap, we established a mathematical model as a framework to explore the potential of using a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-producing oncolytic vaccinia virus in combination with the chemotherapeutic agent first procaspase activating compound (PAC-1). We have previously shown that TRAIL and PAC-1 act synergistically on granulosa tumor cells. In line with our previous results, our current model predicts that, although it is unable to stop the tumor from growing in its current form, combination oral PAC-1 with oncolytic virus (OV) provides the best result compared to monotherapies. Encouragingly, our results suggest that increases to the OV infection rate can lead to the success of this combination therapy within a year. The model developed here can continue to be improved as more data become available, allowing for regimen-tailoring via virtual clinical trials, ultimately shepherding effective regimens into trials.


Assuntos
Tumor de Células da Granulosa , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Ovarianas , Animais , Camundongos , Feminino , Humanos , Vírus Oncolíticos/genética , Terapia Viral Oncolítica/métodos , Linhagem Celular Tumoral , Tumor de Células da Granulosa/terapia , Ligantes , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose , Fator de Necrose Tumoral alfa , Neoplasias Ovarianas/terapia , Modelos Teóricos
9.
J Pharmacol Exp Ther ; 387(1): 66-77, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442619

RESUMO

Glioblastoma is the most common and deadly primary brain tumor in adults. All glioblastoma patients receiving standard-of-care surgery-radiotherapy-chemotherapy (i.e., temozolomide (TMZ)) recur, with an average survival time of only 15 months. New approaches to the treatment of glioblastoma, including immune checkpoint blockade and oncolytic viruses, offer the possibility of improving glioblastoma outcomes and have as such been under intense study. Unfortunately, these treatment modalities have thus far failed to achieve approval. Recently, in an attempt to bolster efficacy and improve patient outcomes, regimens combining chemotherapy and immune checkpoint inhibitors have been tested in trials. Unfortunately, these efforts have not resulted in significant increases to patient survival. To better understand the various factors impacting treatment outcomes of combined TMZ and immune checkpoint blockade, we developed a systems-level, computational model that describes the interplay between glioblastoma, immune, and stromal cells with this combination treatment. Initializing our model to spatial resection patient samples labeled using imaging mass cytometry, our model's predictions show how the localization of glioblastoma cells, influence therapeutic success. We further validated these predictions in samples of brain metastases from patients given they generally respond better to checkpoint blockade compared with primary glioblastoma. Ultimately, our model provides novel insights into the mechanisms of therapeutic success of immune checkpoint inhibitors in brain tumors and delineates strategies to translate combination immunotherapy regimens more effectively into the clinic. SIGNIFICANCE STATEMENT: Extending survival times for glioblastoma patients remains a critical challenge. Although immunotherapies in combination with chemotherapy hold promise, clinical trials have not shown much success. Here, systems models calibrated to and validated against patient samples can improve preclinical and clinical studies by shedding light on the factors distinguishing responses/failures. By initializing our model with imaging mass cytometry visualization of patient samples, we elucidate how factors such as localization of glioblastoma cells and CD8+ T cell infiltration impact treatment outcomes.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Imunoterapia/métodos , Análise de Sistemas
11.
Pharmaceutics ; 15(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36986862

RESUMO

Heart failure (HF), which is a major clinical and public health challenge, commonly develops when the myocardial muscle is unable to pump an adequate amount of blood at typical cardiac pressures to fulfill the body's metabolic needs, and compensatory mechanisms are compromised or fail to adjust. Treatments consist of targeting the maladaptive response of the neurohormonal system, thereby decreasing symptoms by relieving congestion. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, which are a recent antihyperglycemic drug, have been found to significantly improve HF complications and mortality. They act through many pleiotropic effects, and show better improvements compared to others existing pharmacological therapies. Mathematical modeling is a tool used to describe the pathophysiological processes of the disease, quantify clinically relevant outcomes in response to therapies, and provide a predictive framework to improve therapeutic scheduling and strategies. In this review, we describe the pathophysiology of HF, its treatment, and how an integrated mathematical model of the cardiorenal system was built to capture body fluid and solute homeostasis. We also provide insights into sex-specific differences between males and females, thereby encouraging the development of more effective sex-based therapies in the case of heart failure.

12.
Math Biosci ; 358: 108970, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773843

RESUMO

We consider a general mathematical model for protein subunit vaccine with a focus on the MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2, and use the model to study immunological outcomes in the humoral and cell-mediated arms of the immune response from vaccination. The mathematical model is fit to vaccine clinical trial data. We elucidate the role of Interferon-γ and Interleukin-4 in stimulating the immune response of the host. Model results, and results from a sensitivity analysis, show that a balance between the TH1 and TH2 arms of the immune response is struck, with the TH1 response being dominant. The model predicts that two-doses of the vaccine at 28 days apart will result in approximately 85% humoral immunity loss relative to peak immunity approximately 6 months post dose 1.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Subunidades Proteicas , COVID-19/prevenção & controle , SARS-CoV-2 , Interferon gama , Vacinação , Anticorpos Antivirais
13.
Immunoinformatics (Amst) ; 9: 100021, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36643886

RESUMO

The COVID-19 pandemic has revealed the need for the increased integration of modelling and data analysis to public health, experimental, and clinical studies. Throughout the first two years of the pandemic, there has been a concerted effort to improve our understanding of the within-host immune response to the SARS-CoV-2 virus to provide better predictions of COVID-19 severity, treatment and vaccine development questions, and insights into viral evolution and the impacts of variants on immunopathology. Here we provide perspectives on what has been accomplished using quantitative methods, including predictive modelling, population genetics, machine learning, and dimensionality reduction techniques, in the first 26 months of the COVID-19 pandemic approaches, and where we go from here to improve our responses to this and future pandemics.

14.
Blood Adv ; 7(1): 190-194, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35381066

RESUMO

Cyclic thrombocytopenia (CTP) is a rare disease of periodic platelet count oscillations. The pathogenesis of CTP remains elusive. To study the underlying pathophysiology and genetic and cellular associations with CTP, we applied systems biology approaches to 2 patients with stable platelet cycling and reciprocal thrombopoietin (TPO) cycling at multiple time points through 2 cycles. Blood transcriptome analysis revealed cycling of platelet-specific genes, which are in parallel with and precede platelet count oscillation, indicating that cyclical platelet production leads platelet count cycling in both patients. Additionally, neutrophil and erythrocyte-specific genes also showed fluctuations correlating with platelet count changes, consistent with TPO effects on hematopoietic progenitors. Moreover, we found novel genetic associations with CTP. One patient had a novel germline heterozygous loss-of-function (LOF) thrombopoietin receptor (MPL) c.1210G>A mutation, and both had pathogenic somatic gain-of-function (GOF) variants in signal transducer and activator of transcription 3 (STAT3). In addition, both patients had clonal T-cell populations that remained stable throughout platelet count cycles. These mutations and clonal T cells may potentially involve in the pathogenic baseline in these patients, rendering exaggerated persistent thrombopoiesis oscillations of their intrinsic rhythm upon homeostatic perturbations. This work provides new insights into the pathophysiology of CTP and possible therapies.


Assuntos
Receptores de Trombopoetina , Trombocitopenia , Humanos , Receptores de Trombopoetina/genética , Trombocitopenia/etiologia , Fator de Transcrição STAT3/genética , Estudos Longitudinais , Mutação
15.
Sci Rep ; 12(1): 21232, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481777

RESUMO

The lipid nanoparticle (LNP)-formulated mRNA vaccines BNT162b2 and mRNA-1273 are a widely adopted multi vaccination public health strategy to manage the COVID-19 pandemic. Clinical trial data has described the immunogenicity of the vaccine, albeit within a limited study time frame. Here, we use a within-host mathematical model for LNP-formulated mRNA vaccines, informed by available clinical trial data from 2020 to September 2021, to project a longer term understanding of immunity as a function of vaccine type, dosage amount, age, and sex. We estimate that two standard doses of either mRNA-1273 or BNT162b2, with dosage times separated by the company-mandated intervals, results in individuals losing more than 99% humoral immunity relative to peak immunity by 8 months following the second dose. We predict that within an 8 month period following dose two (corresponding to the original CDC time-frame for administration of a third dose), there exists a period of time longer than 1 month where an individual has lost more than 99% humoral immunity relative to peak immunity, regardless of which vaccine was administered. We further find that age has a strong influence in maintaining humoral immunity; by 8 months following dose two we predict that individuals aged 18-55 have a four-fold humoral advantage compared to aged 56-70 and 70+ individuals. We find that sex has little effect on the immune response and long-term IgG counts. Finally, we find that humoral immunity generated from two low doses of mRNA-1273 decays at a substantially slower rate relative to peak immunity gained compared to two standard doses of either mRNA-1273 or BNT162b2. Our predictions highlight the importance of the recommended third booster dose in order to maintain elevated levels of antibodies.


Assuntos
COVID-19 , Vacinas de mRNA , Humanos , Vacina BNT162 , Vacina de mRNA-1273 contra 2019-nCoV , Pandemias , COVID-19/prevenção & controle , Imunidade Humoral
16.
iScience ; 25(6): 104395, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35637733

RESUMO

Oncolytic viruses (OVs) are emerging cancer immunotherapy. Despite notable successes in the treatment of some tumors, OV therapy for central nervous system cancers has failed to show efficacy. We used an ex vivo tumor model developed from human glioblastoma tissue to evaluate the infiltration of herpes simplex OV rQNestin (oHSV-1) into glioblastoma tumors. We next leveraged our data to develop a computational, model of glioblastoma dynamics that accounts for cellular interactions within the tumor. Using our computational model, we found that low stromal density was highly predictive of oHSV-1 therapeutic success, suggesting that the efficacy of oHSV-1 in glioblastoma may be determined by stromal-to-tumor cell regional density. We validated these findings in heterogenous patient samples from brain metastatic adenocarcinoma. Our integrated modeling strategy can be applied to suggest mechanisms of therapeutic responses for central nervous system cancers and to facilitate the successful translation of OVs into the clinic.

17.
Math Biosci Eng ; 19(6): 5813-5831, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35603380

RESUMO

Data analysis is widely used to generate new insights into human disease mechanisms and provide better treatment methods. In this work, we used the mechanistic models of viral infection to generate synthetic data of influenza and COVID-19 patients. We then developed and validated a supervised machine learning model that can distinguish between the two infections. Influenza and COVID-19 are contagious respiratory illnesses that are caused by different pathogenic viruses but appeared with similar initial presentations. While having the same primary signs COVID-19 can produce more severe symptoms, illnesses, and higher mortality. The predictive model performance was externally evaluated by the ROC AUC metric (area under the receiver operating characteristic curve) on 100 virtual patients from each cohort and was able to achieve at least AUC = 91% using our multiclass classifier. The current investigation highlighted the ability of machine learning models to accurately identify two different diseases based on major components of viral infection and immune response. The model predicted a dominant role for viral load and productively infected cells through the feature selection process.


Assuntos
COVID-19 , Influenza Humana , COVID-19/diagnóstico , Humanos , Imunidade , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Aprendizado de Máquina , Curva ROC
18.
iScience ; 25(5): 104179, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35479408

RESUMO

Glioblastoma is a complex disease that is difficult to treat. Network and data science offer alternative approaches to classical bioinformatics pipelines to study gene expression patterns from single-cell datasets, helping to distinguish genes associated with the control of differentiation and aggression. To identify the key molecular regulators of the networks driving glioblastoma/GSC and predict their cell fate dynamics, we applied a host of data theoretic techniques to gene expression patterns from pediatric and adult glioblastoma, and adult glioma-derived stem cells (GSCs). We identified eight transcription factors (OLIG1/2, TAZ, GATA2, FOXG1, SOX6, SATB2, and YY1) and four signaling genes (ATL3, MTSS1, EMP1, and TPT1) as coordinators of cell state transitions and, thus, clinically targetable putative factors differentiating pediatric and adult glioblastomas from adult GSCs. Our study provides strong evidence of complex systems approaches for inferring complex dynamics from reverse-engineering gene networks, bolstering the search for new clinically relevant targets in glioblastoma.

19.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22274164

RESUMO

ImportanceMental health disorders were among the leading global contributors to years lived with disability prior to the COVID-19 pandemic onset, and growing evidence suggests that population mental health outcomes have worsened since the pandemic started. The extent that these changes have altered common age-related trends in psychological distress, where distress typically rises until mid-life and then falls in both sexes, is unknown. ObjectiveTo analyse whether long-term pre-pandemic psychological distress trajectories have altered during the pandemic, and whether these changes have been different across generations and by sex. DesignCross-cohort study with prospective data collection over a 40-year period (earliest time point: 1981; latest time point: February/March 2021). SettingPopulation-based (adult general population), Great Britain. ParticipantsMembers of three nationally representative birth cohorts which comprised all people born in Great Britain in a single week of 1946, 1958, or 1970, and who participated in at least one of the data collection waves conducted after the start of the pandemic (40.6%, 42.8%, 39.4%, respectively). Exposure(s)Time, COVID-19 pandemic. Main Outcome(s) and Measure(s)Psychological distress factor scores, as measured by validated self-reported questionnaires. Results16,389 participants (2,175 from the 1946 birth cohort, 52.8% women; 7,446 from the 1958 birth cohort, 52.4% women; and 6,768 from the 1970 birth cohort, 56.2% women) participated in the study. By September/October 2020, psychological distress levels had reached or exceeded the levels of the peak in the pre-pandemic life-course trajectories, with larger increases in younger cohorts: Standardised Mean Differences (SMD) and 95% confidence intervals (CIs) of -0.02 [-0.07, 0.04], 0.05 [0.02, 0.07], and 0.09 [0.07, 0.12] for the 1946, 1958, and 1970 birth cohorts, respectively. Increases in distress were larger among women than men, widening the pre-existing inequalities observed in the pre-pandemic peak and in the most recent pre-pandemic assessment. Conclusions and RelevancePre-existing long-term psychological distress trajectories of adults born between 1946 and 1970 were disrupted during the COVID-19 pandemic, particularly among women, who reached the highest levels ever recorded in up to 40 years of follow-up data. This may impact future trends of morbidity, disability, and mortality due to common mental health problems.

20.
Front Med (Lausanne) ; 9: 826746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265640

RESUMO

The genome of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19), has been sequenced at an unprecedented scale leading to a tremendous amount of viral genome sequencing data. To assist in tracing infection pathways and design preventive strategies, a deep understanding of the viral genetic diversity landscape is needed. We present here a set of genomic surveillance tools from population genetics which can be used to better understand the evolution of this virus in humans. To illustrate the utility of this toolbox, we detail an in depth analysis of the genetic diversity of SARS-CoV-2 in first year of the COVID-19 pandemic. We analyzed 329,854 high-quality consensus sequences published in the GISAID database during the pre-vaccination phase. We demonstrate that, compared to standard phylogenetic approaches, haplotype networks can be computed efficiently on much larger datasets. This approach enables real-time lineage identification, a clear description of the relationship between variants of concern, and efficient detection of recurrent mutations. Furthermore, time series change of Tajima's D by haplotype provides a powerful metric of lineage expansion. Finally, principal component analysis (PCA) highlights key steps in variant emergence and facilitates the visualization of genomic variation in the context of SARS-CoV-2 diversity. The computational framework presented here is simple to implement and insightful for real-time genomic surveillance of SARS-CoV-2 and could be applied to any pathogen that threatens the health of populations of humans and other organisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA