Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 272: 106943, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38733942

RESUMO

The Chinese sturgeon (Acipenser sinensis) is an endangered freshwater mega-fish (IUCN-red listed) that survives in the Yangtze River Basin, but the population of which has declined significantly in response to environmental pressures generated by human activities. In order to evaluate the interaction between Chinese sturgeon and microplastics (MPs) for the first time, we examined the gut and gills of historical samples (n = 27), in conjunction with the blood and mucus of live samples (n = 10), to explore the potential pathways involved in MP uptake. We detected MPs in 62.9 % of the field fish, with no significant difference between guts (mean=0.9 items/individual) and gills (mean=0.8 items/individual). The abundance of MPs in fish from 2017 was significantly higher than that from 2015 to 2016 with regards to both gills and gut samples. The size of MPs in gills was significantly smaller than those in guts, yet both contained mostly fibers (90.2 %). No MPs were confirmed in blood, however 62.5 % of mucus samples contained MPs. The MPs in mucus indicated the possibility of MPs entering Chinese sturgeons if their skins were damaged. The body size of Chinese sturgeons affected their MPs uptake by ingestion and inhalation, as less MPs were detected in the gut and gills of smaller individuals. Combining the evidence from historical and live samples, we revealed the presence of MPs in different tissues of Chinese sturgeon and their potential relevance to exposure pathways. Our work expands the understanding of multiple exposure pathways between MPs and long-lived mega-fish, while emphasizing the potential risks of long-term exposure in the field.

2.
Environ Pollut ; 348: 123817, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508366

RESUMO

Microplastic is an emerging pollutant and a technical fossil in Anthropocene sediments. Typhoon frequency and intensity have increased due to climate change, which has a major effect on the distribution patterns of microplastics. It is still unknown, though, how the topography of the peninsula affects the reconstruction of the distribution of microplastic in typhoons. Due to frequent typhoons, the Leizhou Peninsula (LZP) in the north part of the South China Sea is an ideal place to study the impact of topographic variations on microplastic distribution during typhoon events. This study investigated microplastics ranging in size from 50 µm to 5 mm in sediment. Microscopic inspection and µ-FTIR tests were used to identify microplastic characteristics from offshore surface sediments before and after typhoons. The average microplastic abundance in offshore sediments decreased from 18 ± 17 items/kg to 15 ± 15 items/kg after typhoons. Results show that typhoons only increase the microplastic abundance in topographically protected areas along the northeast coast of LZP, with no significant difference observed in other regions. The influence of typhoon on the morphological characteristics of microplastics in sediments is more pronounced and widespread, as evidenced by a shift in the predominant shape of microplastics from fibers to fragments and a decrease in size accompanied by an increased abundance within the 100 µm-1 mm fraction. The color of microplastics remained similar before and after typhoons, and the polymer composition of microplastics became more uniform. The alteration of microplastic morphology may be attributed to the enhancement of wave intensity induced by typhoons. This study enhances the comprehension of typhoon-induced impacts on pollutant redistribution, specifically microplastics, thereby providing essential empirical evidence and theoretical foundations for pollution regulation.


Assuntos
Tempestades Ciclônicas , Poluentes Químicos da Água , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Monitoramento Ambiental/métodos , China
3.
Sci Total Environ ; 881: 163164, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37003319

RESUMO

The impact of heavy metals (HMs) on the quality of aquaculture products has attracted worldwide attention. Since Litopenaeus vannamei is a popular aquaculture product among consumers worldwide, it is of great importance to guarantee its dietary safety. An in-situ monitoring program lasting for three months in a typical Litopenaeus vannamei farm found that Pb (100 %) and Cr (86 %) in the adult shrimp were higher than the safety guidelines. In the meantime, Cu (100 %), Cd (100 %) in the water and Cr (40 %) in the feed exceeded the corresponding thresholds. Therefore, quantification of different exposure pathways of shrimp and contamination origins in pond is valuable to improve the dietary safety of the shrimp. Based on Optimal Modeling for Ecotoxicological Applications (OMEGA), Cu was primarily from the ingestion of feed, accounting for 67 % of bioaccumulation, while Cd, Pb and Cr primarily entered shrimp through the adsorption from overlying water (53 % for Cd and 78 % for Pb) and porewater (66 % for Cr), respectively. The HMs in the pond water were further tracked based on a mass balance analysis. The main source of Cu in the aquaculture environment was feed, being responsible for 37 % of the total input. Pb, Cd and Cr were primarily from the inlet water with contributions of 84 %, 54 % and 52 %, respectively. In summary, the proportions of different exposure pathways and origins of HMs in pond-cultured shrimp and its living environment varied widely. To keep end-consumers eating healthily, species specific treatment is required. Feed should be regulated more for Cu. Aimed pretreatments for Pb and Cd in influent water are needed and an additional immobilization for Cr in sediment porewater should be investigated. After implementation of these treatments, the food quality improvement could be further quantified based on our prediction model.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Lagoas , Cádmio , Chumbo , Monitoramento Ambiental , Metais Pesados/análise , Aquicultura , Água , Poluentes Químicos da Água/análise , Medição de Risco , Sedimentos Geológicos
4.
Mar Environ Res ; 187: 105951, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958953

RESUMO

The aquatic plants and macroalgae are primary producers with major roles regarding the maintenance of ecosystems but their interaction with microplastics (MPs) has received less attention than animals. We summarize the methodologies used, the MPs abundances and their characteristics across the literature on MPs pollution in aquatic plants and macroalgae. The sampling and quantification of MPs still lacks consistency between studies, which increased the uncertainty in cross-comparisons. The abundance of MPs varied by orders of magnitude between species and were mostly fibers and polymers with large degrees of production and applications. Filamentous species contained more MPs than others. The average ratio of MPs between vegetated and unvegetated sites reached 3:1. The average ratio of MPs between the biotic and abiotic fractions reached 2193:1, suggesting a high level of retention in fields. Our findings supported that aquatic plants and macroalgae are critical in the plastic flux within the marine environments.


Assuntos
Alga Marinha , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental
5.
Chemosphere ; 291(Pt 2): 132985, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34801569

RESUMO

Along with the increasing amount of plastic production and waste disposal, the presence of microplastics has been confirmed in all compartments of ecosystems. The microplastics in biota is of particular concern due to the potential eco-risks associated with long term exposure and the potential for transportation along food webs. Decapoda represents a diverse taxonomic group within the subphylum Crustacea, and some of which are highly valued in fishery and biological production. The interaction between microplastic pollution and wild populations of decapod crustaceans have been documented less than fish or bivalves but are critical to understand the fates of microplastics in marine eco-systems and enrich the baselines for consumption analyses. Our review systematically summarizes the occurrence, abundance and characteristics of microplastics detected in edible and non-edible sections of decapod crustaceans from field observations. Sub-groups between crabs and shrimps were also included for comparison. The occurrence of microplastics in the edible sections were less than those in non-edible sections, and there are differences between crabs and shrimps. Fibrous microplastics and items with a size category less than 1 mm were dominant pollutants across all available literature. The methodology selection, biological features and uptake pathways play roles in the microplastic body burden in Decapoda. Our work enriches the understanding of microplastic pollution in wild populations of decapod crustaceans but their contribution to the human exposure to microplastics needs to be addressed with more accurate measurements.


Assuntos
Decápodes , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Humanos , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 55(15): 10471-10479, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34297559

RESUMO

Microplastics (size of plastic debris <5 mm) occur in various environments worldwide these days and cause detrimental effects on biota. However, the behavioral responses of fish to microplastics in feeding processes are not well understood. In the present study, juveniles from four fish species and two common shapes of microplastics were used to explore fish feeding responses. We found swallowing-feeding fish ingested more pellets than filtering- and sucking-feeding fish. With high-definition and high-speed observational experiments, we found that all species did not actively capture microfibers; instead, they passively sucked in microfibers while breathing. Surprisingly, fish showed a rejective behavior, which was spontaneously coughing up microfibers mixed with mucus. Nevertheless, some of the microfibers were still found in the gastrointestinal tracts and gills of fish, while abundances of ingested microfibers were increased in the presence of food. Our findings reveal a common phenomenon that fish ingest microplastics inadvertently rather than intentionally. We also provide insights into the pathways via which microplastics enter fish and potential strategies to assess future ecological risk and food safety related to microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Peixes , Plásticos , Poluentes Químicos da Água/análise
7.
Chemosphere ; 252: 126567, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32443265

RESUMO

Microplastic pollution is an important issue for environmental management as their ubiquity in marine and freshwaters has been confirmed. Pollution sources are key to understanding how microplastics travel from land to open oceans. Given that information regarding microplastic transport from diffuse sources is limiting, we conducted a study on roadside dust from rural and urban Victoria, Australia, over two seasons. Any deposited fugitive dust and particulate matter may also be present in our samples. The average microplastic abundance over two seasons ranged from 20.6 to 529.3 items/kg (dry weight based), with a predominant portion of fibers and items less than 1 mm. Polyester and polypropylene were the dominant polymer types (26%) while cotton and cellulose were the most common non-plastic items (27%). Sampling sites displayed consistent microplastic abundances over time and shared similar patterns in size, shape and polymer composition. Multiple correlation and principal component analysis suggest that urbanization and rainfall are important influences to roadside microplastic accumulation. The observed microplastic hotspots were generally located within close vicinity of areas where urban intensive land use and regional population sizes are high. Microplastics accumulated on roads and road verges during periods of dry weather and were flushed away during heavy storms while the corresponding trigger value was unknown. Monitoring roadside dust can be considered as an initial and cost-effective screening of microplastic pollution in urban areas. Further efforts should be made to optimize the methodologies and we advocate prolonged sampling schemes for roadside dust monitoring.


Assuntos
Poeira/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , Microplásticos/análise , Poluição Ambiental/análise , Água Doce , Oceanos e Mares , Material Particulado/análise , Plásticos/análise , Polipropilenos , Urbanização , Vitória
8.
Environ Pollut ; 259: 113865, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31891912

RESUMO

Compared to marine microplastics research, few studies have bio-monitored microplastics in inland waters. It is also important to understand the microplastics' uptake and their potential risks to freshwater species. The Australian glass shrimp Paratya australiensis (Family: Atyidae) is commonly found in fresh waterbodies in eastern Australia, and are sensitive to anthropogenic stressors but have a wide tolerance range to the natural environmental conditions. This study aimed to understand the microplastics' occurrence and types in water samples and the shrimp P. australiensis, and identify if the shrimp could be a suitable bioindicator for microplastic pollution. Surface water and P. australiensis across ten urban and rural freshwater sites in Victoria were sampled. In total, 30 water samples and 100 shrimp were analysed for microplastic content, and shrimp body weights and sizes were also recorded. Microplastics were picked, photographed and identified using FT-IR microscopy: in water samples, 57.9% of items including suspect items were selected to identify; all microplastics found in shrimp samples were identified. Microplastics were present in the surface waters of all sites, with an average abundance of 0.40 ± 0.27 items/L. A total of 36% of shrimp contained microplastics with an average of 0.52 ± 0.55 items/ind (24 ± 31 items/g). Fibre was the most common shape, and blue was the most frequent colour in both water and shrimp samples. The dominant plastic types were polyester in water samples, and rayon in shrimp samples. Even though results from this study show a relatively low concentration of microplastics in water samples in comparison with global studies, it is worth noticing that microplastics were regularly detected in fresh waterbodies in Victoria, Australia. Compared with water samples, shrimp contained a wider variety of plastic types, suggesting they may potentially behave as passive samplers of microplastics pollution in freshwater environments.


Assuntos
Monitoramento Ambiental , Água Doce , Microplásticos , Poluentes Químicos da Água , Animais , Água Doce/química , Microplásticos/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Vitória , Poluentes Químicos da Água/análise
9.
Water Res ; 168: 115140, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31604177

RESUMO

The mitigation of microplastic pollution in the environment calls for a better understanding of the sources and transportation, especially from land sources to the open ocean. We conducted a large-scale investigation of microplastic pollution across the Greater Melbourne Area and the Western Port area, Australia, spanning gradients of land-use from un-developed catchments in conservation areas to more heavily-developed areas. Microplastics were detected in 94% of water samples and 96% of sediment samples, with abundances ranging from 0.06 to 2.5 items/L in water and 0.9 to 298.1 items/kg in sediment. The variation of microplastic abundance in sediments was closely related to that of the overlying waters. Fiber was the most abundant (89.1% and 68.6% of microplastics in water and sediment respectively), and polyester was the dominant polymer in water and sediment. The size of more than 40% of all total microplastics observed was less than 1 mm. Both light and dense polymers of different shapes were more abundant in sediments than those in water, indicating that there is microplastic accumulation in sediments. The abundance of microplastics was higher near coastal cities than at less densely-populated inland areas. A spatial analysis of the data suggests that the abundance of microplastics increases downstream in rivers and accumulates in estuaries and the lentic reaches of these rivers. Correlation and redundancy analysis were used to explore the associations between microplastic pollution and different land-use types. More microplastics and polymer types were found at areas with large amounts of commercial, industrial and transport activities. Microplastic abundances were also correlated with mean particle size. Microplastic hotspots within a coastal metropolis might be caused by a combination of natural accumulation via hydrological dynamics and contribution from increasing anthropogenic influences. Our results strongly suggest that coastal metropolis superimposed on increasing microplastic levels in waterbodies from inland areas to the estuaries and open oceans.


Assuntos
Plásticos , Poluentes Químicos da Água , Austrália , Cidades , Monitoramento Ambiental , Sedimentos Geológicos , Oceanos e Mares
10.
Chemosphere ; 228: 65-74, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31022621

RESUMO

Biomonitoring microplastics in freshwater ecosystems has been insufficient in comparison with its practice in marine environments. It is an important first step to understand microplastic uptake in organisms when assessing risk in natural freshwater habitats. We conducted microplastic biomonitoring within the Greater Melbourne Area; where the microplastic baseline pollution in freshwater organisms was largely unknown. A common noxious fish species, Gambusia holbrooki, was targeted. Individuals (n = 180) from nine wetlands were analyzed. Uptake pathway, size, weight and gender were examined in relation to microplastic uptake in the body (presumed uptake via gut) and head (presumed uptake via gills). On average, 19.4% of fish had microplastics present in their bodies with an abundance of 0.6 items per individual (items/ind) and 7.2% of fish had microplastics in their heads with an abundance of 0.1 items/ind. Polyester was the dominant plastic type and fibers were the most common shape. The amount of microplastics in Gambusia holbrooki in current study is relatively low in a global comparison. The bodies of fish contained more microplastics on average than heads, and the size of microplastics detected in heads were smaller than those found in bodies. Microplastic uptake was directly proportional to size and weight. Furthermore, female individuals showed a tendency to ingest more microplastics than males. Laboratory experiments under controlled conditions are suggested to further explore such relationships. Our findings are important to understanding the potential ecological risks posed by microplastics to organisms in freshwater environments and provide suitable methodologies to conduct biomonitoring in future investigations.


Assuntos
Ciprinodontiformes/metabolismo , Monitoramento Ambiental/métodos , Plásticos/farmacocinética , Áreas Alagadas , Animais , Austrália , Ecossistema , Feminino , Água Doce/química , Masculino , Fatores Sexuais , Distribuição Tecidual , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/farmacocinética
11.
Environ Pollut ; 246: 174-182, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30543943

RESUMO

Although freshwater and estuary systems are recognized as origins and transport pathways of plastics to the oceans, there is a lack of comparison of microplastics in different water bodies or river networks. In the present study, the spatial distribution of microplastics was compared across different water bodies, including city creeks (Shanghai), rivers (Suzhou River and Huangpu River), an estuary (Yangtze Estuary) and coastal waters (East China Sea) in the Yangtze Delta area. Significant spatial differences of microplastic abundances were revealed across the sampling areas. The results showed that the abundance of microplastics was higher (1.8-2.4 items/L) in freshwater bodies than that in estuarine and coastal water (0.9 items/L). In the Suzhou River and the Huangpu River, microplastics showed trends of increasing abundance downstream, where the peak of microplastic pollution is closer to the city center and the estuary. In respect of abundance, microplastics are likely to be transported from pollution sources to sink areas via river networks. The proportion of fibers was the highest in city creeks (88%), followed by the Suzhou River (85%), the Huangpu River (81%), the Yangtze Estuary (66%) and the East China Sea (37%). Similarly, polyesters dominated in city creeks and rivers. The results suggest that both the abundance and properties of microplastic pollution varies across different water bodies. Microplastic pollution in small freshwater bodies is more serious than in estuarine and coastal waters. Therefore, we support prioritization of water monitoring for microplastics within entire river networks, instead of single water body surveys.


Assuntos
Monitoramento Ambiental , Plásticos/análise , Poluentes Químicos da Água/análise , China , Cidades , Oceanos e Mares , Rios/química , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...