Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14578, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028741

RESUMO

The small intestinal mucosa constitutes a physical barrier separating the gut lumen from sterile internal tissues. Junctional complexes between cells regulate transport across the barrier, preventing water loss and the entry of noxious molecules or pathogens. Inflammatory diseases in cattle disrupt this barrier; nonetheless, mechanisms of barrier disruption in cattle are poorly understood. We investigated the direct effects of three inflammatory cytokines, TNFα, IFNγ, and IL-18, on the bovine intestinal barrier utilizing intestinal organoids. Flux of fluorescein isothiocyanate (FITC)-labeled dextran was used to investigate barrier permeability. Immunocytochemistry and transmission electron microscopy were used to investigate junctional morphology, specifically tortuosity and length/width, respectively. Immunocytochemistry and flow cytometry was used to investigate cellular turnover via proliferation and apoptosis. Our study shows that 24-h cytokine treatment with TNFα or IFNγ significantly increased dextran permeability and tight junctional tortuosity, and reduced cellular proliferation. TNFα reduced the percentage of G2/M phase cells, and IFNγ treatment increased cell apoptotic rate. IL-18 did not directly induce significant changes to barrier permeability or cellular turnover. Our study concludes that the inflammatory cytokines, TNFα and IFNγ, directly induce intestinal epithelial barrier dysfunction and alter the tight junctional morphology and rate of cellular turnover in bovine intestinal epithelial cells.


Assuntos
Citocinas , Enteropatias , Animais , Bovinos , Dextranos , Células Epiteliais , Interleucina-18 , Mucosa Intestinal , Permeabilidade , Junções Íntimas , Fator de Necrose Tumoral alfa
2.
Sci Rep ; 11(1): 13454, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188162

RESUMO

Diabetes mellitus (DM) is associated with a dysfunctional intestinal barrier and an increased risk for systemic infection and inflammation in people, though the pathogenic mechanisms leading to this are poorly understood. Using a canine model of DM, we showed that the peroxisomal proliferator-activated receptor-α agonist fenofibrate modulates plasma lipid profiles and markers of intestinal barrier function. A 3-week course of fenofibrate reduced fasting interstitial glucose and inflammatory cytokine IL-8 and TNF-α concentrations, which correlated with reduced triglyceride levels. The lipidomic profile exhibited significantly lower levels of triacylglycerols, phosphatidylethanolamines, diacylglycerols, and ceramides following fenofibrate administration. On histopathological analysis, we observed an aberrant amount of intraepithelial CD3+ T lymphocytes (IEL) in the small intestine of dogs with spontaneous and induced-DM. Fenofibrate reduced IEL density in the duodenum of dogs with DM and enhanced markers of intestinal barrier function in vivo and in vitro. There were minimal changes in the intestinal microbial composition following fenofibrate administration, suggesting that repair of intestinal barriers can be achieved independently of the resident microbiota. Our findings indicate that lipid metabolism is critical to functionality of the intestinal epithelium, which can be rescued by PPARα activation in dogs with DM.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Fenofibrato/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , PPAR alfa/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Cães , Interleucina-8/metabolismo , Masculino , Fator de Necrose Tumoral alfa/metabolismo
3.
J Int AIDS Soc ; 23(10): e25628, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33073530

RESUMO

INTRODUCTION: The majority of new HIV infections occur through mucosal transmission. The availability of readily applicable and accessible platforms for anti-retroviral (ARV) delivery is critical for the prevention of HIV acquisition through sexual transmission in both women and men. There is a compelling need for developing new topical delivery systems that have advantages over the pills, gels and rings, which currently fail to guarantee protection against mucosal viral transmission in vulnerable populations due to lack of user compliance. The silk fibroin (SF) platform offers another option that may be better suited to individual circumstances and preferences to increase efficacy through user compliance. The objective of this study was to test safety and efficacy of SF for anti-HIV drug delivery to mucosal sites and for viral prevention. METHODS: We formulated a potent HIV inhibitor Griffithsin (Grft) in a mucoadhesive silk fibroin (SF) drug delivery platform and tested the application in a non-human primate model in vivo and a pre-clinical human cervical and colorectal tissue explant model. Both vaginal and rectal compartments were assessed in rhesus macaques (Mucaca mulatta) that received SF (n = 4), no SF (n = 7) and SF-Grft (n = 11). In this study, we evaluated the composition of local microbiota, inflammatory cytokine production, histopathological changes in the vaginal and rectal compartments and mucosal protection after ex vivo SHIV challenge. RESULTS: Effective Grft release and retention in mucosal tissues from the SF-Grft platform resulted in protection against HIV in human cervical and colorectal tissue as well as against SHIV challenge in both rhesus macaque vaginal and rectal tissues. Mucoadhesion of SF-Grft inserts did not cause any inflammatory responses or changes in local microbiota. CONCLUSIONS: We demonstrated that in vivo delivery of SF-Grft in rhesus macaques fully protects against SHIV challenge ex vivo after two hours of application and is safe to use in both the vaginal and rectal compartments. Our study provides support for the development of silk fibroin as a highly promising, user-friendly HIV prevention modality to address the global disparity in HIV infection.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Fibroínas , Infecções por HIV/prevenção & controle , Lectinas/administração & dosagem , Lectinas de Plantas/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Animais , Fármacos Anti-HIV/análise , Fármacos Anti-HIV/farmacocinética , Materiais Biocompatíveis , Colo do Útero/virologia , Colo/virologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , HIV/efeitos dos fármacos , Humanos , Lectinas/análise , Lectinas/farmacocinética , Macaca mulatta , Microbiota/efeitos dos fármacos , Mucosa/química , Veículos Farmacêuticos , Lectinas de Plantas/análise , Lectinas de Plantas/farmacocinética , Reto/química , Reto/microbiologia , Reto/virologia , Vagina/química , Vagina/microbiologia
4.
Proc Natl Acad Sci U S A ; 116(49): 24819-24829, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740620

RESUMO

Chronic gut inflammatory diseases are associated with disruption of intestinal epithelial barriers and impaired mucosal immunity. HIV-1 (HIV) causes depletion of mucosal CD4+ T cells early in infection and disruption of gut epithelium, resulting in chronic inflammation and immunodeficiency. Although antiretroviral therapy (ART) is effective in suppressing viral replication, it is incapable of restoring the "leaky gut," which poses an impediment for HIV cure efforts. Strategies are needed for rapid repair of the epithelium to protect intestinal microenvironments and immunity in inflamed gut. Using an in vivo nonhuman primate intestinal loop model of HIV/AIDS, we identified the pathogenic mechanism underlying sustained disruption of gut epithelium and explored rapid repair of gut epithelium at the intersection of microbial metabolism. Molecular, immunological, and metabolomic analyses revealed marked loss of peroxisomal proliferator-activated receptor-α (PPARα) signaling, predominant impairment of mitochondrial function, and epithelial disruption both in vivo and in vitro. To elucidate pathways regulating intestinal epithelial integrity, we introduced probiotic Lactobacillus plantarum into Simian immunodeficiency virus (SIV)-inflamed intestinal lumen. Rapid recovery of the epithelium occurred within 5 h of L. plantarum administration, independent of mucosal CD4+ T cell recovery, and in the absence of ART. This intestinal barrier repair was driven by L. plantarum-induced PPARα activation and restoration of mitochondrial structure and fatty acid ß-oxidation. Our data highlight the critical role of PPARα at the intersection between microbial metabolism and epithelial repair in virally inflamed gut and as a potential mitochondrial target for restoring gut barriers in other infectious or gut inflammatory diseases.


Assuntos
Metabolismo Energético/fisiologia , Microbioma Gastrointestinal/fisiologia , Intestinos/imunologia , Intestinos/microbiologia , Mitocôndrias/metabolismo , PPAR alfa/metabolismo , Animais , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Epitélio/imunologia , Infecções por HIV , Humanos , Imunidade nas Mucosas , Interleucina-1beta/metabolismo , Intestinos/patologia , Lactobacillus plantarum/fisiologia , Macaca mulatta , Masculino , Metabolômica , Mitocôndrias/efeitos dos fármacos , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia
5.
Front Microbiol ; 10: 1104, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191468

RESUMO

Gut mucosal damage, associated with Human Immunodeficiency Virus-1 (HIV) infection, is characterized by depletion in CD4+ T cells and persistent immune activation as a result of early epithelial barrier disruption and systemic translocation of microbial products. Unique approaches in studying both HIV infection in human patients and Simian Immunodeficiency Virus (SIV) infection in rhesus macaques have provided critical evidence for the pathogenesis and treatment of HIV/AIDS. While there is vast resemblance between SIV and HIV infection, the development of gut dysbiosis attributed to HIV infection in chronically infected patients has not been consistently reported in SIV infection in the non-human primate model of AIDS, raising concerns for the translatability of gut microbiome studies in rhesus macaques. This review outlines our current understanding of gut microbial signatures across various stages of HIV versus SIV infection, with an emphasis on the impact of microbiome-based therapies in restoring gut mucosal immunity as well as their translational potential to supplement current HIV cure efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...