Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Space Phys ; 121(10): 10075-10090, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31106104

RESUMO

The importance of the heavy ions and dust grains for the chemistry and aerosol formation in Titan's ionosphere has been well established in the recent years of the Cassini mission. In this study we combine independent in situ plasma (Radio Plasma and Wave Science Langmuir Probe (RPWS/LP)) and particle (Cassini Plasma Science Electron Spectrometer, Cassini Plasma Science Ion Beam Spectrometer, and Ion and Neutral Mass Spectrometer) measurements of Titan's ionosphere for selected flybys (T16, T29, T40, and T56) to produce altitude profiles of mean ion masses including heavy ions and develop a Titan-specific method for detailed analysis of the RPWS/LP measurements (applicable to all flybys) to further constrain ion charge densities and produce the first empirical estimate of the average charge of negative ions and/or dust grains. Our results reveal the presence of an ion-ion (dusty) plasma below ~1100 km altitude, with charge densities exceeding the primary ionization peak densities by a factor ≥2 in the terminator and nightside ionosphere (n e /n i ≤ 0.1). We suggest that ion-ion (dusty) plasma may also be present in the dayside ionosphere below 900 km (n e /n i < 0.5 at 1000 km altitude). The average charge of the dust grains (≥1000 amu) is estimated to be between -2.5 and -1.5 elementary charges, increasing toward lower altitudes.

2.
Science ; 350(6261): aad0210, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542576

RESUMO

Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere.

3.
Science ; 350(6261): aad0398, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542578

RESUMO

Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere.

4.
Science ; 350(6261): aad0459, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542579

RESUMO

The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability.

5.
Geophys Res Lett ; 41(10): 3323-3330, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26074636

RESUMO

We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.

6.
Science ; 330(6012): 1813-5, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-21109635

RESUMO

The flyby measurements of the Cassini spacecraft at Saturn's moon Rhea reveal a tenuous oxygen (O(2))-carbon dioxide (CO(2)) atmosphere. The atmosphere appears to be sustained by chemical decomposition of the surface water ice under irradiation from Saturn's magnetospheric plasma. This in situ detection of an oxidizing atmosphere is consistent with remote observations of other icy bodies, such as Jupiter's moons Europa and Ganymede, and suggestive of a reservoir of radiolytic O(2) locked within Rhea's ice. The presence of CO(2) suggests radiolysis reactions between surface oxidants and organics or sputtering and/or outgassing of CO(2) endogenic to Rhea's ice. Observations of outflowing positive and negative ions give evidence for pickup ionization as a major atmospheric loss mechanism.


Assuntos
Dióxido de Carbono , Oxigênio , Saturno , Atmosfera , Meio Ambiente Extraterreno , Gelo , Espectrometria de Massas , Processos Fotoquímicos , Astronave
7.
Science ; 319(5868): 1380-4, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18323452

RESUMO

Saturn's moon Rhea had been considered massive enough to retain a thin, externally generated atmosphere capable of locally affecting Saturn's magnetosphere. The Cassini spacecraft's in situ observations reveal that energetic electrons are depleted in the moon's vicinity. The absence of a substantial exosphere implies that Rhea's magnetospheric interaction region, rather than being exclusively induced by sputtered gas and its products, likely contains solid material that can absorb magnetospheric particles. Combined observations from several instruments suggest that this material is in the form of grains and boulders up to several decimetres in size and orbits Rhea as an equatorial debris disk. Within this disk may reside denser, discrete rings or arcs of material.

8.
Science ; 318(5848): 217-20, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17932282

RESUMO

Jupiter's magnetotail is the largest cohesive structure in the solar system and marks the loss of vast numbers of heavy ions from the Jupiter system. The New Horizons spacecraft traversed the magnetotail to distances exceeding 2500 jovian radii (R(J)) and revealed a remarkable diversity of plasma populations and structures throughout its length. Ions evolve from a hot plasma disk distribution at approximately 100 R(J) to slower, persistent flows down the tail that become increasingly variable in flux and mean energy. The plasma is highly structured-exhibiting sharp breaks, smooth variations, and apparent plasmoids-and contains ions from both Io and Jupiter's ionosphere with intense bursts of H(+) and H(+)(3). Quasi-periodic changes were seen in flux at approximately 450 and approximately 1500 R(J) with a 10-hour period. Other variations in flow speed at approximately 600 to 1000 R(J) with a 3- to 4-day period may be attributable to plasmoids moving down the tail.


Assuntos
Júpiter , Meio Ambiente Extraterreno , Hidrogênio , Íons , Magnetismo , Prótons , Astronave
9.
Science ; 316(5826): 870-5, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17495166

RESUMO

Titan's lower atmosphere has long been known to harbor organic aerosols (tholins) presumed to have been formed from simple molecules, such as methane and nitrogen (CH4 and N2). Up to now, it has been assumed that tholins were formed at altitudes of several hundred kilometers by processes as yet unobserved. Using measurements from a combination of mass/charge and energy/charge spectrometers on the Cassini spacecraft, we have obtained evidence for tholin formation at high altitudes (approximately 1000 kilometers) in Titan's atmosphere. The observed chemical mix strongly implies a series of chemical reactions and physical processes that lead from simple molecules (CH4 and N2) to larger, more complex molecules (80 to 350 daltons) to negatively charged massive molecules (approximately 8000 daltons), which we identify as tholins. That the process involves massive negatively charged molecules and aerosols is completely unexpected.


Assuntos
Benzeno , Hidrocarbonetos , Nitrilas , Saturno , Aerossóis , Atmosfera , Meio Ambiente Extraterreno , Íons , Peso Molecular , Fotoquímica , Astronave , Temperatura , Raios Ultravioleta
10.
Science ; 311(5766): 1409-12, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16527967

RESUMO

During the 14 July 2005 encounter of Cassini with Enceladus, the Cassini Plasma Spectrometer measured strong deflections in the corotating ion flow, commencing at least 27 Enceladus radii (27 x 252.1 kilometers) from Enceladus. The Cassini Radio and Plasma Wave Science instrument inferred little plasma density increase near Enceladus. These data are consistent with ion formation via charge exchange and pickup by Saturn's magnetic field. The charge exchange occurs between neutrals in the Enceladus atmosphere and corotating ions in Saturn's inner magnetosphere. Pickup ions are observed near Enceladus, and a total mass loading rate of about 100 kilograms per second (3 x 10(27) H(2)O molecules per second) is inferred.


Assuntos
Atmosfera , Meio Ambiente Extraterreno , Saturno , Meio Ambiente Extraterreno/química , Hidrogênio/análise , Oxigênio/análise , Astronave , Análise Espectral , Água/análise
11.
Science ; 307(5713): 1262-6, 2005 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15731443

RESUMO

During Cassini's initial orbit, we observed a dynamic magnetosphere composed primarily of a complex mixture of water-derived atomic and molecular ions. We have identified four distinct regions characterized by differences in both bulk plasma properties and ion composition. Protons are the dominant species outside about 9 RS (where RS is the radial distance from the center of Saturn), whereas inside, the plasma consists primarily of a corotating comet-like mix of water-derived ions with approximately 3% N+. Over the A and B rings, we found an ionosphere in which O2+ and O+ are dominant, which suggests the possible existence of a layer of O2 gas similar to the atmospheres of Europa and Ganymede.


Assuntos
Magnetismo , Oxigênio , Saturno , Atmosfera , Meio Ambiente Extraterreno , Hidrogênio , Gelo , Íons , Prótons , Astronave , Análise Espectral
12.
Nature ; 433(7027): 717-9, 2005 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-15716945

RESUMO

It has often been stated that Saturn's magnetosphere and aurorae are intermediate between those of Earth, where the dominant processes are solar wind driven, and those of Jupiter, where processes are driven by a large source of internal plasma. But this view is based on information about Saturn that is far inferior to what is now available. Here we report ultraviolet images of Saturn, which, when combined with simultaneous Cassini measurements of the solar wind and Saturn kilometric radio emission, demonstrate that its aurorae differ morphologically from those of both Earth and Jupiter. Saturn's auroral emissions vary slowly; some features appear in partial corotation whereas others are fixed to the solar wind direction; the auroral oval shifts quickly in latitude; and the aurora is often not centred on the magnetic pole nor closed on itself. In response to a large increase in solar wind dynamic pressure Saturn's aurora brightened dramatically, the brightest auroral emissions moved to higher latitudes, and the dawn side polar regions were filled with intense emissions. The brightening is reminiscent of terrestrial aurorae, but the other two variations are not. Rather than being intermediate between the Earth and Jupiter, Saturn's auroral emissions behave fundamentally differently from those at the other planets.

13.
Nature ; 433(7027): 722-5, 2005 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-15716947

RESUMO

Saturn is a source of intense kilometre-wavelength radio emissions that are believed to be associated with its polar aurorae, and which provide an important remote diagnostic of its magnetospheric activity. Previous observations implied that the radio emission originated in the polar regions, and indicated a strong correlation with solar wind dynamic pressure. The radio source also appeared to be fixed near local noon and at the latitude of the ultraviolet aurora. There have, however, been no observations relating the radio emissions to detailed auroral structures. Here we report measurements of the radio emissions, which, along with high-resolution images of Saturn's ultraviolet auroral emissions, suggest that although there are differences in the global morphology of the aurorae, Saturn's radio emissions exhibit an Earth-like correspondence between bright auroral features and the radio emissions. This demonstrates the universality of the mechanism that results in emissions near the electron cyclotron frequency narrowly beamed at large angles to the magnetic field.

14.
Nature ; 433(7027): 720-2, 2005 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-15716946

RESUMO

The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms, but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system, whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere.

15.
Nature ; 415(6875): 991-4, 2002 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-11875558

RESUMO

Limited single-spacecraft observations of Jupiter's magnetopause have been used to infer that the boundary moves inward or outward in response to variations in the dynamic pressure of the solar wind. At Earth, multiple-spacecraft observations have been implemented to understand the physics of how this motion occurs, because they can provide a snapshot of a transient event in progress. Here we present a set of nearly simultaneous two-point measurements of the jovian magnetopause at a time when the jovian magnetopause was in a state of transition from a relatively larger to a relatively smaller size in response to an increase in solar-wind pressure. The response of Jupiter's magnetopause is very similar to that of the Earth, confirming that the understanding built on studies of the Earth's magnetosphere is valid. The data also reveal evidence for a well-developed boundary layer just inside the magnetopause.

16.
Nature ; 415(6875): 1000-3, 2002 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-11875561

RESUMO

Jupiter's X-ray aurora has been thought to be excited by energetic sulphur and oxygen ions precipitating from the inner magnetosphere into the planet's polar regions. Here we report high-spatial-resolution observations that demonstrate that most of Jupiter's northern auroral X-rays come from a 'hot spot' located significantly poleward of the latitudes connected to the inner magnetosphere. The hot spot seems to be fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared and ultraviolet emissions have also been observed. We infer from the data that the particles that excite the aurora originate in the outer magnetosphere. The hot spot X-rays pulsate with an approximately 45-min period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft. These results invalidate the idea that jovian auroral X-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the inner magnetosphere. Instead, the X-rays seem to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...