Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 335: 122330, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37572846

RESUMO

An experimental approach mimicking the land-sea continuum in microcosms was developed in order to determine the effect of the terrigenous inputs by soil runoff on the microbial functional potential in hydrocarbon (HC) contaminated marine coastal sediment. We hypothesized that the coalescent event increases the functional potential of microbial communities in marine coastal sediments, influencing the fate of HC in marine coastal ecosystems. The microbial functional potential including the HC degradation ability was assessed by DNA-array to compare the sediment receiving or not terrigenous inputs. The removal of HC and the functional gene richness in sediment was unchanged with the terrigenous inputs. However, the gene variants (GVs) composition was modified indicating functional redundancy. In addition, functional indicators including GVs related to sulfite reduction, denitrification and polyaromatic degradation were identified in higher proportion in sediment receiving terrigenous inputs. The terrigenous inputs modified the functional co-occurrence networks, showing a reorganization of the GVs associations with an increase of the network complexity. Different keystone GVs ensuring similar functions were identified in networks with or without terrigenous inputs, further confirming functional redundancy. We argue that functional redundancy maintains the structure of microbial community in hydrocarbon-contaminated land-sea continuum mixing zone. Our results provide helpful functional information for the monitoring and management of coastal environment affected by human land-based activities.


Assuntos
Microbiota , Humanos , Solo , Sedimentos Geológicos/química , Hidrocarbonetos
2.
Front Microbiol ; 14: 869907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778872

RESUMO

Microbial communities inhabiting hypersaline wetlands, well adapted to the environmental fluctuations due to flooding and desiccation events, play a key role in the biogeochemical cycles, ensuring ecosystem service. To better understand the ecosystem functioning, we studied soil microbial communities of Salineta wetland (NE Spain) in dry and wet seasons in three different landscape stations representing situations characteristic of ephemeral saline lakes: S1 soil usually submerged, S2 soil intermittently flooded, and S3 soil with halophytes. Microbial community composition was determined according to different redox layers by 16S rRNA gene barcoding. We observed reversed redox gradient, negative at the surface and positive in depth, which was identified by PERMANOVA as the main factor explaining microbial distribution. The Pseudomonadota, Gemmatimonadota, Bacteroidota, Desulfobacterota, and Halobacteriota phyla were dominant in all stations. Linear discriminant analysis effect size (LEfSe) revealed that the upper soil surface layer was characterized by the predominance of operational taxonomic units (OTUs) affiliated to strictly or facultative anaerobic halophilic bacteria and archaea while the subsurface soil layer was dominated by an OTU affiliated to Roseibaca, an aerobic alkali-tolerant bacterium. In addition, the potential functional capabilities, inferred by PICRUSt2 analysis, involved in carbon, nitrogen, and sulfur cycles were similar in all samples, irrespective of the redox stratification, suggesting functional redundancy. Our findings show microbial community changes according to water flooding conditions, which represent useful information for biomonitoring and management of these wetlands whose extreme aridity and salinity conditions are exposed to irreversible changes due to human activities.

3.
mBio ; 14(2): e0276122, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786561

RESUMO

The organization of microbial communities in marine sediment relies on complex biotic and abiotic interactions. Among them, the interaction between fungi and bacteria plays a crucial role building specific microbial assemblages, resulting in metabolic networks adapted to environmental conditions. The fungal-bacterial interaction (FBI) includes bacterial translocation via fungal mycelia, allowing bacterial dispersion, and ecological niche colonization. In order to demonstrate that the translocation of bacteria through fungal mycelia involves bacterial selection, the mycelia of two fungi isolated from marine coastal sediment, Alternaria destruens F10.81 and Fusarium pseudonygamai F5.76, showing different strategies for uptake of polycyclic aromatic hydrocarbon (PAH), homogenous internalization and vacuole forming respectively, were used to translocate bacteria through hydrophobic hydrocarbon contaminated sediments. A. destruens F10.81 selected four specific bacteria, while bacterial selection by F. pseudonygamai F5.76 was not evident. Among the bacteria selected by A. destruens F10.81, Spirochaeta litoralis, known as strictly anaerobic bacterium, was identified, indicating that A. destruens F10.81 selects and transports both aerobic and anaerobic bacteria. Such a result is consistent with the observed formation of anoxic micro-niches in areas surrounding and affected by fungal hyphae. Our findings provide new insights on the selection and dispersion of bacterial communities by fungi, which are crucial for the organization of microbial communities and their functioning in coastal PAH-contaminated sediments. IMPORTANCE The study provides advances for understanding fungal-bacterial relationships, particularly on the selection and dispersion of bacterial communities by fungi, which are crucial for the organization of microbial communities and their functioning in coastal PAH-contaminated sediments. The transportation of bacteria via fungal hyphae (fungal highway) results in bacterial selection; in particular, fungal hyphae offer adequate conditions for the transport of both aerobic and anaerobic bacteria through hydrophobic patches for the colonization of novel niches.


Assuntos
Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Bactérias Anaeróbias/metabolismo , Anaerobiose , Composição de Bases , RNA Ribossômico 16S/metabolismo , Filogenia , Análise de Sequência de DNA , Bactérias/metabolismo , Fungos/genética , Fungos/metabolismo , Sedimentos Geológicos/microbiologia
4.
Environ Sci Pollut Res Int ; 30(15): 44640-44656, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36694068

RESUMO

In cold environments, the low temperature slows down microbial metabolisms, such as the biodegradation processes of hydrocarbons, which are often stimulated by the addition of dispersants in oil spill disasters. In this study, we investigated the effects of hydrocarbon water-accommodated fraction (WAF) prepared with and without dispersant on benthic microbial communities in a microcosm experiment in which hydrocarbon removal was observed. Both WAFs contained similar polycyclic aromatic hydrocarbon (PAH) content. The microcosm experiment, set up with either pristine or contaminated sediments, was conducted for 21 days at 4 °C under WAF and WAF + dispersant conditions. The behavior of bacterial communities in response to WAF and WAF + dispersant was examined at both DNA and RNA levels, revealing the effect of WAF and WAF + dispersant on the resident and active communities respectively. The contaminated sediment showed less taxa responsive to the addition of both WAF and WAF + dispersant than the pristine sediment, indicating the legacy effect by the presence hydrocarbon-degrading and dispersant-resistant taxa inhabiting the contaminated sediment.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Água , Petróleo/análise , Poluentes Químicos da Água/análise , Hidrocarbonetos , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
5.
Microbiol Res ; 267: 127259, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436444

RESUMO

The land-sea continuum constitutes a mixing zone where soil microbial communities encounter, via runoff, those inhabiting marine coastal sediment resulting in community coalescence. Here, we propose an experimental approach, mimicking the land-sea continuum, to study the microbial community coalescence events in different situations, by 16S and 18S rRNA genes metabarcoding. The microbial community structure of sediment diverged with the soil inputs. For prokaryotes, phylogenetic enrichment and amplicon sequence variants (ASVs) replacements characterized the community changes in sediment receiving soil inputs. For fungi, despite phylogenetic enrichment was not observed, the fungal ASVs richness was maintained by soil inputs. Comparison of microbial communities revealed ASVs specific to sediment receiving soil inputs, and also ASVs shared with soil and/or runoff. Among these specific ASVs, four bacterial and one fungal ASVs were identified as indicators of coalescence. Our study provides evidences that coalescence involves the mixing of microorganisms and of the environment.


Assuntos
Microbiota , Filogenia , Microbiota/genética , Bactérias/genética , Sedimentos Geológicos/microbiologia , Solo/química
6.
J Hazard Mater ; 443(Pt B): 130244, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36327839

RESUMO

The structure and diversity of microbial community inhabiting coastal sediments reflect the exposition to contaminants. Aiming to assess the changes in the microbiota from Sepetiba Bay (SB, Brazil) sediments, correlations between the 16S rRNA gene data (V4-V5 region), metal contamination factors (CF), and the ecological risk classification provided by the Quality Ratio (QR) index were considered. The results show that microbial diversity differs significantly between the less (SB external sector) and the most (SB internal sector) polluted sectors. Also, differences in the microbial community structure regarding the ecological risk classifications validated the QR index as a reliable tool to report the SB chronic contamination. Microbial indicator genera resistant to metals (Desulfatiglans, SEEP-SRB1, Spirochaeta 2, among others) presented mainly anaerobic metabolisms. These genera are related to the sulfate reducing and methanogenic metabolisms probably participating in the natural attenuation processes but also associated with greenhouse gas emissions. In contrast, microbial indicator genera sensitive to metals (Rubripirellula, Blastopirellula, Aquibacter, among others) presented mainly aerobic metabolisms. It is suggested that future works should investigate the metabolic functions to evaluate the influence of metallic contaminants on microbial community inhabiting SB sediment.


Assuntos
Metais Pesados , Microbiota , Poluentes Químicos da Água , Sedimentos Geológicos , RNA Ribossômico 16S/genética , Bactérias/genética , Brasil , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Metais Pesados/análise
7.
Chemosphere ; 307(Pt 2): 135928, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35944693

RESUMO

Microbial communities from Sepetiba Bay (SB, Rio de Janeiro, Brazil), characterized by 16S rRNA gene (V4-V5 region) sequencing analysis, were found to be correlated with the metallic contamination factor and the Quality Ratio (QR) index. Consistently, the predicted function of microbial communities, obtained with Tax4Fun2, showed that the functional patterns in SB internal sector under the highest anthropogenic pressure were different from that observed in the external sector with the lowest contamination level. Signal transduction, cellular community, membrane transport, and energy metabolism were among the KEGG pathways favored by metallic contamination in the SB internal sector, while lipid metabolism, transcription, and translation were among the pathways favored in the SB external sector. Noteworthy, the relative proportions of KEGG pathways and genes associated with metallic homeostasis showed significant differences according to the SB sectors, consistently with the ecological risk classification (QR index) of sediments. The functional prediction approach is an economically viable alternative and presents an overview of the main pathways/genes favored in the SB microbiota exposed to long-term pollution. In contrast, the microgAMBI, ecological status index based on bacterial community composition, was not consistent with the metallic contamination of SB, suggesting that this index requires improvements to be applied in tropical areas. Our study also revealed a strong correlation between metal resistance genes (MRG) and antibiotic resistance genes (ARG), indicating that MRG and ARG are co-selected by the metallic contamination prevailing in SB.


Assuntos
Poluentes Ambientais , Metais Pesados , Microbiota , Poluentes Químicos da Água , Antibacterianos/análise , Antibacterianos/farmacologia , Baías , Brasil , Monitoramento Ambiental , Poluentes Ambientais/análise , Sedimentos Geológicos , Metais/análise , Metais/toxicidade , Metais Pesados/análise , Microbiota/genética , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Environ Sci Pollut Res Int ; 29(48): 72718-72728, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35614354

RESUMO

Fungal microbiome interacts with the other biotic components in coastal sediment playing a key role in the overall coordination of the whole microbial community. These interactions are affected by human activities, such as the constant affluence of polycyclic aromatic hydrocarbons (PAHs). Although fungi and bacteria interactions have been found to play a key role in PAH bioremediation in soil, the effect of PAHs on fungal diversity and their specific interactions with bacteria in coastal sediments are yet to be investigated. The understanding of fungal bacterial interactions under PAH contamination is critical for further bioremediation regarding the important fungal diversity observed in coastal sediment. Here, we investigated the fungal bacterial co-occurrence in PAH-contaminated sediments. The co-occurrence network, constructed with sequencing data (bacterial 16S and fungal 18S rRNA genes barcoding) from 51 PAH-contaminated samples, revealed modules dominated by either fungi or bacteria, reflecting probably the different types of interaction possible between fungi and bacteria. Then, a network constructed from non-contaminated sample data was compared with a network built from the corresponding PAH-contaminated samples issued from a mesocosm experiment. The comparison revealed the effect of PAHs in fungi and bacteria interactions, characterized by a PAH-contaminated network exhibiting less abundant and diverse fungal and bacterial ASVs than the non-contaminated network. However, the links between the remaining ASVs in the PAH-contaminated network showed stronger correlations. Noteworthy, an ASV affiliated to Chrytridiomycota phylum was identified as a keystone fungal ASV forming a module in association with facultative anaerobic and anaerobic bacteria affiliated to the families Prolixibacteraceae, Fusobacteriaceae, and Desulfobulbaceae. These results suggest that fungi promote bacterial anaerobic metabolisms, which are important to cope with the presence of PAHs in sediments. Our study reveals the importance of fungal bacterial interactions in coastal sediments paving the way for future studies to fully understand fungal role in coastal sediment.


Assuntos
Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Bactérias/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo
9.
Environ Res ; 212(Pt D): 113467, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35588780

RESUMO

Dispersants, used for combating oil spills, increase hydrocarbon bioavailability promoting their biodegradation. Oil weathering process introduces harmful soluble hydrocarbons, such as polycyclic aromatic hydrocarbons (PAHs), into the water column, resulting in water-accommodated fraction (WAF). The presence of dispersants can influence the weathering process by increasing PAHs solubility, toxicity and biodegradability. However, little is known on how dispersants affect microbial communities and their degradation capacities, especially in cold environment where low temperature decreases microbial activity and thus hydrocarbon degradation. Here, we investigated the microbial community dynamics in cold water contaminated by WAF prepared from crude oil with or without a commercial dispersant (Finasol OSR52). The WAFs, prepared with Naphthenic North Atlantic crude oil, were used to contaminate seawater from Norwegian cold sites, one oil-contaminated and the other pristine. The WAF-contaminated seawaters were maintained in microcosms at 4 °C for 21 days. The content of PAHs and microbial compositions (16S rRNA gene sequencing) were determined at days 0, 7, 14 and 21. In addition, the 96 h toxicity assay with adult Acartia tonsa revealed WAFs toxicity at days 0 and 21. The toxicity of WAF mixtures, with and without dispersant, against Acartia tonsa was reduced during the experiment, but PAHs removal was not increased. The water from the oil-contaminated site showed the highest PAHs removal revealing legacy effect (presence of microorganisms adapted to PAHs). Additionally, our results reveal: i) microbial community plasticity allowing the adaptation to the presence of PAHs and dispersant, ii) specific bacteria taxa probably involved in PAHs degradation, and iii) dispersants shape the microbial communities dynamics by stimulating potential dispersant-degrading taxa, such as Fusibacter. Thus, our results provide valuable insights on the role of microbial community in determining the fate of water-solubilized hydrocarbon in cold environment while questioning the role of dispersant used for fighting oil spill.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos , Petróleo/análise , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , RNA Ribossômico 16S/genética , Água do Mar , Água , Poluentes Químicos da Água/análise
10.
Front Microbiol ; 13: 1031439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590440

RESUMO

In order to exploit the microbes present in the environment for their beneficial resources, effective selection and isolation of microbes from environmental samples is essential. In this study, we fabricated a gel-filled microwell array device using resin for microbial culture. The device has an integrated sealing mechanism that enables high-density isolation based on the culture of microorganisms; the device is easily manageable, facilitating observation using bright-field microscopy. This low-cost device made from polymethyl methacrylate (PMMA)/polyethylene terephthalate (PET) has 900 microwells (600 µm × 600 µm × 700 µm) filled with a microbial culture gel medium in glass slide-sized plates. It also has grooves for maintaining the moisture content in the micro-gel. The partition wall between the wells has a highly hydrophobic coating to inhibit microbial migration to neighboring wells and to prevent exchange of liquid substances. After being hermetically sealed, the device can maintain moisture in the agarose gels for 7 days. In the bacterial culture experiment using this device, environmental bacteria were isolated and cultured in individual wells after 3 days. Moreover, the isolated bacteria were then picked up from wells and re-cultured. This device is effective for the first screening of microorganisms from marine environmental samples.

11.
J Hazard Mater ; 421: 126789, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34365235

RESUMO

Microbial communities inhabiting soil-water-sediment continuum in coastal areas provide important ecosystem services. Their adaptation in response to environmental stressors, particularly mitigating the impact of pollutants discharged from human activities, has been considered for the development of microbial biomonitoring tools, but their use is still in the infancy. Here, chemical and molecular (16S rRNA gene metabarcoding) approaches were combined in order to determine the impact of pollutants on microbial assemblages inhabiting the aquatic network of a soil-water-sediment continuum around the Ichkeul Lake (Tunisia), an area highly impacted by human activities. Samples were collected within the soil-river-lake continuum at three stations in dry (summer) and wet (winter) seasons. The contaminant pressure index (PI), which integrates Polycyclic aromatic hydrocarbons (PAHs), alkanes, Organochlorine pesticides (OCPs) and metal contents, and the microbial pressure index microgAMBI, based on bacterial community structure, showed significant correlation with contamination level and differences between seasons. The comparison of prokaryotic communities further revealed specific assemblages for soil, river and lake sediments. Correlation analyses identified potential "specialist" genera for the different compartments, whose abundances were correlated with the pollutant type found. Additionally, PICRUSt analysis revealed the metabolic potential for pollutant transformation or degradation of the identified "specialist" species, providing information to estimate the recovery capacity of the ecosystem. Such findings offer the possibility to define a relevant set of microbial indicators for assessing the effects of human activities on aquatic ecosystems. Microbial indicators, including the detection of "specialist" and sensitive taxa, and their functional capacity, might be useful, in combination with integrative microbial indices, to constitute accurate biomonitoring tools for the management and restoration of complex coastal aquatic systems.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Biomarcadores , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Lagos , Hidrocarbonetos Policíclicos Aromáticos/análise , RNA Ribossômico 16S/genética , Rios , Solo , Poluentes Químicos da Água/análise
12.
Res Microbiol ; 172(6): 103872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34375709

RESUMO

COnsensus DEgenerate Hybrid Oligonucleotide Primers (CODEHOP) were developed for the detection of the dszB desulfinase gene (2'-hydroxybiphenyl-2-sulfinate desulfinase; EC 3.13.1.3) by polymerase chain reaction (PCR), which allow to reveal larger diversity than traditional primers. The new developed primers were used as molecular monitoring tool to drive a procedure for the isolation of desulfurizing microorganisms. The primers revealed a large dszB gene diversity in environmental samples, particularly in diesel-contaminated soil that served as inoculum for enrichment cultures. The isolation procedure using the dibenzothiophene sulfone (DBTO2) as sole sulfur source reduced drastically the dszB gene diversity. A dszB gene closely related to that carried by Gordonia species was selected. The desulfurization activity was confirmed by the production of desulfurized 2-hydroxybiphenyl (2-HBP). Metagenomic 16S rRNA gene sequencing showed that the Gordonia genus was represented at low abundance in the initial bacterial community. Such observation highlighted that the culture medium and conditions represent the bottleneck for isolating novel desulfurizing microorganisms. The new developed primers constitute useful tool for the development of appropriate cultural-dependent procedures, including medium and culture conditions, to access novel desulfurizing microorganisms useful for the petroleum industry.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/genética , Genes Bacterianos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Bactérias Redutoras de Enxofre/enzimologia , Enxofre/metabolismo , Actinobacteria/genética , Proteínas de Bactérias/classificação , Variação Genética , Sedimentos Geológicos/microbiologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/classificação , Filogenia , Reação em Cadeia da Polimerase , Rhodococcus/enzimologia , Rhodococcus/genética , Microbiologia do Solo , Bactérias Redutoras de Enxofre/genética , Tiofenos/metabolismo
13.
Microbiol Res ; 252: 126854, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34454310

RESUMO

In order to understand the effect of human practices on microbial mats organisation, the study aimed to investigate the biodiversity within microbial mats from exploited and abandoned salterns. Despite several attempts, archaeal 16S rRNA gene fragment sequences were not obtained, indicating that microbial mats were probably dominated by Bacteria with very low abundance of Archaea (< 1%). Thus, the study compared the bacterial and meiofaunal diversity of microbial mats from abandoned and exploited salterns. The higher salinity (101 ± 3.7 psu vs. 51.1 ± 0.7 psu; Welch t-test p < 0.05) of the exploited site maintained lower bacterial diversity in comparison to the abandoned site where the salinity gradient was no longer maintained. However, the microbial mats exhibited similar bacterial class composition while the eukaryotic diversity was significantly higher in the exploited saltern. The abandoned saltern was dominated by sulfate-reducing bacteria and Nematoda, while the exploited saltern was characterized by the presence of halophilic bacteria belonging to Marinobacter, Salinivibrio and Rhodohalobacter genera, and the larger abundance of Hypotrichia (ciliates). Such bacterial and eukaryotic diversity difference might be explained by human actions for salt recovery in exploited salterns such as scraping the surface of microbial mat and increasing salinity renewing the microbial mat each year. Such action decreases the bacterial diversity changing the food web structure that favour the presence of a larger diversity of eukaryotic organisms. Our study provides new insights on microbial mat communities inhabiting salterns, especially the consequences of abandoning saltern exploitation.


Assuntos
Bactérias , Biodiversidade , Ecossistema , Microbiologia Ambiental , Eucariotos , Bactérias/classificação , Bactérias/genética , Eucariotos/classificação , Eucariotos/genética , França , Ilhas , RNA Ribossômico 16S/genética
14.
Mar Pollut Bull ; 164: 112082, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33524832

RESUMO

The cultivable fungal diversity from PAH-contaminated sediments was examined for the tolerance to polycyclic aromatic hydrocarbon (PAH). The 85 fungal strains, isolated in non-selective media, revealed a large diversity by ribosomal internal transcribed spacer (ITS) sequencing, even including possible new species. Most strains (64%) exhibited PAH-tolerance, indicating that sediments retain diverse cultivable PAH-tolerant fungi. The PAH-tolerance was linked neither to a specific taxon nor to the peroxidase genes (LiP, MnP and Lac). Examining the PAH-removal (degradation and/or sorption), Alternaria destruens F10.81 showed the best capacity with above 80% removal for phenanthrene, pyrene and fluoranthene, and around 65% for benzo[a]pyrene. A. destruens F10.81 internalized pyrene homogenously into the hyphae that contrasted with Fusarium pseudoygamai F5.76 in which PAH-vacuoles were observed but PAH removal was below 20%. Thus, our study paves the way for the exploitation of fungi in remediation strategies to mitigate the effect of PAH in coastal marine sediments.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Alternaria , Biodegradação Ambiental , Fungos , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos/análise
15.
Environ Pollut ; 252(Pt A): 644-656, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31185353

RESUMO

Bacterial communities inhabiting sediments in coastal areas endure the effect of strong anthropogenic pressure characterized by the presence of multiple contaminants. Understanding the effect of pollutants on the organization of bacterial communities is of paramount importance in order to unravel bacterial assemblages colonizing specific ecological niches. Here, chemical and molecular approaches were combined to investigate the bacterial communities inhabiting the sediments of the Ichkeul Lake/Bizerte Lagoon, a hydrological system under anthropogenic pressure. Although the microbial community of the Ichkeul Lake sediment was different to that of the Bizerte Lagoon, common bacterial genera were identified suggesting a lake-lagoon continuum probably due to the hydrology of the system exchanging waters according to the season. These genera represent bacterial "generalists" maintaining probably general biogeochemical functions. Linear discriminant analysis effect size (LEfSe) showed significant differential abundance distribution of bacterial genera according to the habitat, the pollution type and level. Further, correlation analyses identified specific bacterial genera which abundance was linked with pesticides concentrations in the lake, while in the lagoon the abundance of specific bacterial genera was found linked with the concentrations of PAHs (Polycyclic aromatic hydrocarbons) and organic forms of Sn. As well, bacterial genera which abundance was not correlated with the concentrations of pollutants were identified in both lake and lagoon. These findings represent valuable information, pointing out specific bacterial genera associated with pollutants, which represent assets for developing bacterial tools for the implementation, the management, and monitoring of bioremediation processes to mitigate the effect of pollutants in aquatic ecosystems.


Assuntos
Lagos/microbiologia , Microbiologia da Água , Poluição da Água/análise , Bactérias , Biodegradação Ambiental , Ecossistema , Sedimentos Geológicos/química , Hidrologia , Lagos/química , Praguicidas/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Tunísia
16.
Sci Total Environ ; 631-632: 1059-1069, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29727932

RESUMO

Air samples from four contrasting outdoor environments including a park, an arable farm, a waste water treatment plant and a composting facility were analysed during the summer and winter months. The aim of the research was to study the feasibility of differentiating microbial communities from urban, rural and industrial areas between seasons with chemical and molecular markers such as microbial volatile organic compounds (MVOCs) and phospholipid fatty acids (PLFAs). Air samples (3l) were collected every 2h for a total of 6h in order to assess the temporal variations of MVOCs and PLFAs along the day. MVOCs and VOCs concentrations varied over the day, especially in the composting facility which was the site where more human activities were carried out. At this site, total VOC concentration varied between 80 and 170µgm-3 in summer and 20-250µgm-3 in winter. The composition of MVOCs varied between sites due to the different biological substrates including crops, waste water, green waste or grass. MVOCs composition also differed between seasons as in summer they are more likely to get modified by oxidation processes in the atmosphere and in winter by reduction processes. The composition of microbial communities identified by the analysis of PLFAs also varied among the different locations and between seasons. The location with higher concentrations of PLFAs in summer was the farm (7297ngm-3) and in winter the park (11,724ngm-3). A specific set of MVOCs and PLFAs that most represent each one of the locations was identified by principal component analyses (PCA) and canonical analyses. Further to this, concentrations of both total VOCs and PLFAs were at least three times higher in winter than in summer. The difference in concentrations between summer and winter suggest that seasonal variations should be considered when assessing the risk of exposure to these compounds.

17.
Front Microbiol ; 8: 1549, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861063

RESUMO

Deciphering the ecology of marine obligate hydrocarbonoclastic bacteria (MOHCB) is of crucial importance for understanding their success in occupying distinct niches in hydrocarbon-contaminated marine environments after oil spills. In marine coastal sediments, MOHCB are particularly subjected to extreme fluctuating conditions due to redox oscillations several times a day as a result of mechanical (tide, waves and currents) and biological (bioturbation) reworking of the sediment. The adaptation of MOHCB to the redox oscillations was investigated by an experimental ecology approach, subjecting a hydrocarbon-degrading microbial community to contrasting oxygenation regimes including permanent anoxic conditions, anoxic/oxic oscillations and permanent oxic conditions. The most ubiquitous MOHCB, Alcanivorax and Cycloclasticus, showed different behaviors, especially under anoxic/oxic oscillation conditions, which were more favorable for Alcanivorax than for Cycloclasticus. The micro-diversity of 16S rRNA gene transcripts from these genera revealed specific ecotypes for different oxygenation conditions and their dynamics. It is likely that such ecotypes allow the colonization of distinct ecological niches that may explain the success of Alcanivorax and Cycloclasticus in hydrocarbon-contaminated coastal sediments during oil-spills.

18.
Front Microbiol ; 8: 1532, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848536

RESUMO

The occurrence of non-isoprenoid alkyl glycerol ether lipids in Bacteria and natural environments is increasingly being reported and the specificity and diagenetic stability of these lipids make them powerful biomarkers for biogeochemical and environmental studies. Yet the environmental controls on the biosynthesis of these peculiar membrane lipids remain poorly documented. Here, the lipid content of two mesophilic (Desulfatibacillum aliphaticivorans and Desulfatibacillum alkenivorans) and one thermophilic (Thermodesulfobacterium commune) sulfate-reducing bacteria-whose membranes are mostly composed of ether lipids-was investigated as a function of growth temperature (20-40°C and 54-84°C, respectively). For all strains, the cellular lipid content was lower at sub- or supra-optimal growth temperature, but the relative proportions of dialkyl glycerols, monoalkyl glycerols and fatty acids remained remarkably stable whatever the growth temperature. Rather than changing the proportions of the different lipid classes, the three strains responded to temperature changes by modifying the average structural composition of the alkyl and acyl chains constitutive of their membrane lipids. Major adaptive mechanisms concerned modifications of the level of branching and of the proportions of the different methyl branched lipids. Specifically, an increase in temperature induced mesophilic strains to produce less dimethyl branched dialkyl glycerols and 10-methyl branched lipids relative to linear structures, and the thermophilic strain to decrease the proportion of anteiso relative to iso methyl branched compounds. These modifications were in agreement with a regulation of the membrane fluidity. In one mesophilic and the thermophilic strains, a modification of the growth temperature further induced changes in the relative proportions of sn-2 vs sn-1 monoalkyl glycerols, suggesting an unprecedented mechanism of homeoviscous adaptation in Bacteria. Strong linear correlations observed between different ratios of alkyl glycerols and temperature allow to hypothesize the use of these specific lipids as indicators of temperature changes in the environment.

19.
Mar Genomics ; 29: 55-59, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27425602

RESUMO

In coastal marine sediment, oxygen fluctuations induced by bioturbating activities are widespread and exert a great influence, not only on the structure and diversity of the microbenthic communities, but also on their activities. Thus, the activity of benthic organisms can have a significant influence on the degradation of hydrocarbons (HC) and can favor the development of hydrocarbonoclastic microorganisms in contaminated marine sediments. Here, we have generated metatranscriptomic data from coastal marine sediments affected by oil addition and/or by the reworking activity of the marine polychaete Hediste diversicolor to gain insights into the active microbial groups involved in the response to oil addition under the oxygen-fluctuating conditions. The preliminary results suggest that the macrofauna promote the diversity of active aerobic hydrocarbonoclastic bacteria in marine sediments, even if its influence cannot be strongly observed at the microbial community expression profiles level.


Assuntos
Bactérias/classificação , Bactérias/genética , Sedimentos Geológicos/microbiologia , Metagenoma , Transcriptoma , Animais , Bactérias/efeitos dos fármacos , França , Poluição por Petróleo/efeitos adversos , Poliquetos/fisiologia
20.
FEMS Microbiol Rev ; 40(6): 814-830, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28201512

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and originate from natural sources and anthropogenic activities. PAHs enter the marine environment in two main ways, corresponding to chronic pollution or acute pollution by oil spills. The global PAH fluxes in marine environments are controlled by the microbial degradation and the biological pump, which plays a role in particle settling and in sequestration through bioaccumulation. Due to their low water solubility and hydrophobic nature, PAHs tightly adhere to sediments leading to accumulation in coastal and deep sediments. Microbial assemblages play an important role in determining the fate of PAHs in water and sediments, supporting the functioning of biogeochemical cycles and the microbial loop. This review summarises the knowledge recently acquired in terms of both chronic and acute PAH pollution. The importance of the microbial ecology in PAH-polluted marine ecosystems is highlighted as well as the importance of gaining further in-depth knowledge of the environmental services provided by microorganisms.


Assuntos
Organismos Aquáticos , Bactérias , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...