Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(40): 8962-8969, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37772502

RESUMO

Mixed iodide-bromide methylammonium lead perovskite (MAPbIxBr3-x) nanocrystals (NCs) hold promise for use in light-emitting applications owing to the size- and composition-tunability of their bandgap. However, the segregation of halides during light exposure causes their band gaps to become unstable and narrow. Here, we use transient absorption spectroscopy to track excited-state dynamics during photoinduced halide segregation. The Auger recombination dynamics are observed to accelerate as the bandgap narrows, suggesting enhanced electron-hole overlap. We simulate the motion of iodide within the NC and estimate the evolving bandgap and electron-hole overlap during two possible mechanisms of halide segregation. Our results support a segregation mechanism in which iodide anions form a domain within the NC, rather than a mechanism in which iodide anions independently segregate toward the NC surface. Such mechanistic insight will contribute to future NC bandgap stabilization strategies.

2.
Nature ; 591(7848): 72-77, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658694

RESUMO

Lead halide perovskites are promising semiconductors for light-emitting applications because they exhibit bright, bandgap-tunable luminescence with high colour purity1,2. Photoluminescence quantum yields close to unity have been achieved for perovskite nanocrystals across a broad range of emission colours, and light-emitting diodes with external quantum efficiencies exceeding 20 per cent-approaching those of commercial organic light-emitting diodes-have been demonstrated in both the infrared and the green emission channels1,3,4. However, owing to the formation of lower-bandgap iodide-rich domains, efficient and colour-stable red electroluminescence from mixed-halide perovskites has not yet been realized5,6. Here we report the treatment of mixed-halide perovskite nanocrystals with multidentate ligands to suppress halide segregation under electroluminescent operation. We demonstrate colour-stable, red emission centred at 620 nanometres, with an electroluminescence external quantum efficiency of 20.3 per cent. We show that a key function of the ligand treatment is to 'clean' the nanocrystal surface through the removal of lead atoms. Density functional theory calculations reveal that the binding between the ligands and the nanocrystal surface suppresses the formation of iodine Frenkel defects, which in turn inhibits halide segregation. Our work exemplifies how the functionality of metal halide perovskites is extremely sensitive to the nature of the (nano)crystalline surface and presents a route through which to control the formation and migration of surface defects. This is critical to achieve bandgap stability for light emission and could also have a broader impact on other optoelectronic applications-such as photovoltaics-for which bandgap stability is required.

3.
Front Chem ; 8: 585853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195083

RESUMO

Methylammonium lead triiodide (MAPbI3) nanocrystals (NCs) are emerging materials for a range of optoelectronic applications. Photophysical characterization is typically limited to structurally stable NCs owing to the long timescales required for many spectroscopies, preventing the accurate measurement of NCs during growth. This is a particular challenge for non-linear spectroscopies such as transient absorption. Here we report on the use of a novel single-shot transient absorption (SSTA) spectrometer to study MAPbI3 NCs as they grow. Comparing the transient spectra to derivatives of the linear absorbance reveals that photogenerated charge carriers become localized at surface trap states during NC growth, inducing a TA lineshape characteristic of the Stark effect. Observation of this Stark signal shows that the contribution of trapped carriers to the TA signal declines as growth continues, supporting a growth mechanism with increased surface ligation toward the end of NC growth. This work opens the door to the application of time-resolved spectroscopies to NCs in situ, during their synthesis, to provide greater insight into their growth mechanisms and the evolution of their photophysical properties.

4.
J Chem Phys ; 153(16): 164705, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138429

RESUMO

Methylglyoxal (MG)-an atmospherically important α-dicarbonyl implicated in aqueous-phase secondary organic aerosol formation-is known to be surface-active. Due to the presence of carbonyl moieties, MG can hydrate to form geminal diols in solution. Recently, it has been shown that MG exists predominantly as a monohydrate at the neat air-water interface. However, inorganic aerosol constituents have the potential to "salt-out" MG to the interface, shift its hydration equilibria, and catalyze self- and cross-oligomerization reactions. Here, we study the influence of the non-reactive salt, sodium chloride (NaCl), on the MG's surface adsorption and hydration state using vibrational sum frequency spectroscopy. The presence of NaCl is found to enhance MG's surface activity but not to the extent that water is fully excluded from the interface. Perturbations in the interfacial water structure are attributed to shifts in MG's hydration equilibrium at higher ionic strengths. Evidence of surface-active MG oligomer species is presented, but such oligomers are not thought to contribute significantly to the interfacial population. This work builds on the published studies on MG in pure water and gives insight into the interface's perturbation by NaCl, which has important implications for understanding MG's atmospheric fate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...