Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Clin Transl Med ; 14(4): e1648, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38602256

RESUMO

BACKGROUND: Understanding how to modulate the microenvironment of tumors that are resistant to immune checkpoint inhibitors represents a major challenge in oncology.Here we investigate the ability of USP7 inhibitors to reprogram the tumor microenvironment (TME) by inhibiting secretion of vascular endothelial growth factor (VEGF) from fibroblasts. METHODS: To understand the role played by USP7 in the TME, we systematically evaluated the effects of potent, selective USP7 inhibitors on co-cultures comprising components of the TME, using human primary cells. We also evaluated the effects of USP7 inhibition on tumor growth inhibition in syngeneic models when dosed in combination with immune checkpoint inhibitors (ICIs). RESULTS: Abrogation of VEGF secretion from fibroblasts in response to USP7 inhibition resulted in inhibition of tumor neoangiogenesis and increased tumor recruitment of CD8-positive T-lymphocytes, leading to significantly improved sensitivity to immune checkpoint inhibitors. In syngeneic models, treatment with USP7 inhibitors led to striking tumor responses resulting in significantly improved survival. CONCLUSIONS: USP7-mediated reprograming of the TME is not linked to its previously characterized role in modulating MDM2 but does require p53 and UHRF1 in addition to the well-characterized VEGF transcription factor, HIF-1α. This represents a function of USP7 that is unique to fibroblasts, and which is not observed in cancer cells or other components of the TME. Given the potential for USP7 inhibitors to transform "immune desert" tumors into "immune responsive" tumors, this paves the way for a novel therapeutic strategy combining USP7 inhibitors with immune checkpoint inhibitors (ICIs).


Assuntos
Neoplasias , Peptidase 7 Específica de Ubiquitina , Fator A de Crescimento do Endotélio Vascular , Humanos , Proteínas Estimuladoras de Ligação a CCAAT/farmacologia , Fibroblastos/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Microambiente Tumoral , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores
2.
Mol Cancer Ther ; 21(4): 594-606, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086954

RESUMO

Multivalent second-generation TRAIL-R2 agonists are currently in late preclinical development and early clinical trials. Herein, we use a representative second-generation agent, MEDI3039, to address two major clinical challenges facing these agents: lack of predictive biomarkers to enable patient selection and emergence of resistance. Genome-wide CRISPR knockout screens were notable for the lack of resistance mechanisms beyond the canonical TRAIL-R2 pathway (caspase-8, FADD, BID) as well as p53 and BAX in TP53 wild-type models, whereas a CRISPR activatory screen identified cell death inhibitors MCL-1 and BCL-XL as mechanisms to suppress MEDI3039-induced cell death. High-throughput drug screening failed to identify genomic alterations associated with response to MEDI3039; however, transcriptomics analysis revealed striking association between MEDI3039 sensitivity and expression of core components of the extrinsic apoptotic pathway, most notably its main apoptotic effector caspase-8 in solid tumor cell lines. Further analyses of colorectal cell lines and patient-derived xenografts identified caspase-8 expression ratio to its endogenous regulator FLIP(L) as predictive of sensitivity to MEDI3039 in several major solid tumor types and a further subset indicated by caspase-8:MCL-1 ratio. Subsequent MEDI3039 combination screening of TRAIL-R2, caspase-8, FADD, and BID knockout models with 60 compounds with varying mechanisms of action identified two inhibitor of apoptosis proteins (IAP) that exhibited strong synergy with MEDI3039 that could reverse resistance only in BID-deleted models. In summary, we identify the ratios of caspase-8:FLIP(L) and caspase-8:MCL-1 as potential predictive biomarkers for second-generation TRAIL-R2 agonists and loss of key effectors such as FADD and caspase-8 as likely drivers of clinical resistance in solid tumors.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Ligante Indutor de Apoptose Relacionado a TNF , Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/genética , Linhagem Celular Tumoral , Genômica , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
3.
Gut ; 71(8): 1600-1612, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497144

RESUMO

OBJECTIVES: Transcriptomic-based subtyping, consensus molecular subtyping (CMS) and colorectal cancer intrinsic subtyping (CRIS) identify a patient subpopulation with mesenchymal traits (CMS4/CRIS-B) and poorer outcome. Here, we investigated the relationship between prevalence of Fusobacterium nucleatum (Fn) and Fusobacteriales, CMS/CRIS subtyping, cell type composition, immune infiltrates and host contexture to refine patient stratification and to identify druggable context-specific vulnerabilities. DESIGN: We coupled cell culture experiments with characterisation of Fn/Fusobacteriales prevalence and host biology/microenviroment in tumours from two independent colorectal cancer patient cohorts (Taxonomy: n=140, colon and rectal cases of The Cancer Genome Atlas (TCGA-COAD-READ) cohort: n=605). RESULTS: In vitro, Fn infection induced inflammation via nuclear factor kappa-light-chain-enhancer of activated B cells/tumour necrosis factor alpha in HCT116 and HT29 cancer cell lines. In patients, high Fn/Fusobacteriales were found in CMS1, microsatellite unstable () tumours, with infiltration of M1 macrophages, reduced M2 macrophages, and high interleukin (IL)-6/IL-8/IL-1ß signalling. Analysis of the Taxonomy cohort suggested that Fn was prognostic for CMS4/CRIS-B patients, despite having lower Fn load than CMS1 patients. In the TCGA-COAD-READ cohort, we likewise identified a differential association between Fusobacteriales relative abundance and outcome when stratifying patients in mesenchymal (either CMS4 and/or CRIS-B) versus non-mesenchymal (neither CMS4 nor CRIS-B). Patients with mesenchymal tumours and high Fusobacteriales had approximately twofold higher risk of worse outcome. These associations were null in non-mesenchymal patients. Modelling the three-way association between Fusobacteriales prevalence, molecular subtyping and host contexture with logistic models with an interaction term disentangled the pathogen-host signalling relationship and identified aberrations (including NOTCH, CSF1-3 and IL-6/IL-8) as candidate targets. CONCLUSION: This study identifies CMS4/CRIS-B patients with high Fn/Fusobacteriales prevalence as a high-risk subpopulation that may benefit from therapeutics targeting mesenchymal biology.


Assuntos
Neoplasias Colorretais , Neoplasias Colorretais/genética , Fusobacterium nucleatum , Humanos , Interleucina-8 , Prevalência , Prognóstico
4.
Cell Death Differ ; 29(2): 272-284, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34912054

RESUMO

Cell death pathways have evolved to maintain tissue homoeostasis and eliminate potentially harmful cells from within an organism, such as cells with damaged DNA that could lead to cancer. Apoptosis, known to eliminate cells in a predominantly non-inflammatory manner, is controlled by two main branches, the intrinsic and extrinsic apoptotic pathways. While the intrinsic pathway is regulated by the Bcl-2 family members, the extrinsic pathway is controlled by the Death receptors, members of the tumour necrosis factor (TNF) receptor superfamily. Death receptors can also activate a pro-inflammatory type of cell death, necroptosis, when Caspase-8 is inhibited. Apoptotic pathways are known to be tightly regulated by post-translational modifications, especially by ubiquitination. This review discusses research on ubiquitination-mediated regulation of apoptotic signalling. Additionally, the emerging importance of ubiquitination in regulating necroptosis is discussed.


Assuntos
Apoptose , Necroptose , Apoptose/genética , Dano ao DNA/genética , Receptores de Morte Celular/genética , Receptores de Morte Celular/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Receptores do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais/genética , Ubiquitinação/genética , Ubiquitinação/fisiologia
5.
Cell Death Dis ; 12(10): 864, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556638

RESUMO

Rewiring of host cytokine networks is a key feature of inflammatory bowel diseases (IBD) such as Crohn's disease (CD). Th1-type cytokines-IFN-γ and TNF-α-occupy critical nodes within these networks and both are associated with disruption of gut epithelial barrier function. This may be due to their ability to synergistically trigger the death of intestinal epithelial cells (IECs) via largely unknown mechanisms. In this study, through unbiased kinome RNAi and drug repurposing screens we identified JAK1/2 kinases as the principal and nonredundant drivers of the synergistic killing of human IECs by IFN-γ/TNF-α. Sensitivity to IFN-γ/TNF-α-mediated synergistic IEC death was retained in primary patient-derived intestinal organoids. Dependence on JAK1/2 was confirmed using genetic loss-of-function studies and JAK inhibitors (JAKinibs). Despite the presence of biochemical features consistent with canonical TNFR1-mediated apoptosis and necroptosis, IFN-γ/TNF-α-induced IEC death was independent of RIPK1/3, ZBP1, MLKL or caspase activity. Instead, it involved sustained activation of JAK1/2-STAT1 signalling, which required a nonenzymatic scaffold function of caspase-8 (CASP8). Further modelling in gut mucosal biopsies revealed an intercorrelated induction of the lethal CASP8-JAK1/2-STAT1 module during ex vivo stimulation of T cells. Functional studies in CD-derived organoids using inhibitors of apoptosis, necroptosis and JAKinibs confirmed the causative role of JAK1/2-STAT1 in cytokine-induced death of primary IECs. Collectively, we demonstrate that TNF-α synergises with IFN-γ to kill IECs via the CASP8-JAK1/2-STAT1 module independently of canonical TNFR1 and cell death signalling. This non-canonical cell death pathway may underpin immunopathology driven by IFN-γ/TNF-α in diverse autoinflammatory diseases such as IBD, and its inhibition may contribute to the therapeutic efficacy of anti-TNFs and JAKinibs.


Assuntos
Caspase 8/metabolismo , Células Epiteliais/patologia , Interferon gama/metabolismo , Intestinos/patologia , Janus Quinase 1/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Apoptose , Biópsia , Morte Celular , Linhagem Celular Tumoral , Colo/patologia , Citoproteção , Células Epiteliais/metabolismo , Humanos , Janus Quinase 2/metabolismo , Mitocôndrias/metabolismo , Organoides/patologia , Interferência de RNA , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais
6.
Mol Cancer Ther ; 20(9): 1627-1639, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34389694

RESUMO

Inhibitors of apoptosis proteins (IAPs) are intracellular proteins, with important roles in regulating cell death, inflammation, and immunity. Here, we examined the clinical and therapeutic relevance of IAPs in colorectal cancer. We found that elevated expression of cIAP1 and cIAP2 (but not XIAP) significantly correlated with poor prognosis in patients with microsatellite stable (MSS) stage III colorectal cancer treated with 5-fluorouracil (5FU)-based adjuvant chemotherapy, suggesting their involvement in promoting chemoresistance. A novel IAP antagonist tolinapant (ASTX660) potently and rapidly downregulated cIAP1 in colorectal cancer models, demonstrating its robust on-target efficacy. In cells co-cultured with TNFα to mimic an inflammatory tumor microenvironment, tolinapant induced caspase-8-dependent apoptosis in colorectal cancer cell line models; however, the extent of apoptosis was limited because of inhibition by the caspase-8 paralogs FLIP and, unexpectedly, caspase-10. Importantly, tolinapant-induced apoptosis was augmented by FOLFOX in human colorectal cancer and murine organoid models in vitro and in vivo, due (at least in part) to FOLFOX-induced downregulation of class I histone deacetylases (HDAC), leading to acetylation of the FLIP-binding partner Ku70 and downregulation of FLIP. Moreover, the effects of FOLFOX could be phenocopied using the clinically relevant class I HDAC inhibitor, entinostat, which also induced acetylation of Ku70 and FLIP downregulation. Further analyses revealed that caspase-8 knockout RIPK3-positive colorectal cancer models were sensitive to tolinapant-induced necroptosis, an effect that could be exploited in caspase-8-proficient models using the clinically relevant caspase inhibitor emricasan. Our study provides evidence for immediate clinical exploration of tolinapant in combination with FOLFOX in poor prognosis MSS colorectal cancer with elevated cIAP1/2 expression.


Assuntos
Proteína 3 com Repetições IAP de Baculovírus/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Morfolinas/farmacologia , Piperazinas/farmacologia , Pirróis/farmacologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cell Death Dis ; 11(11): 1020, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257690

RESUMO

Colorectal cancer is a molecularly heterogeneous disease. Responses to genotoxic chemotherapy in the adjuvant or palliative setting vary greatly between patients, and colorectal cancer cells often resist chemotherapy by evading apoptosis. Antagonists of an inhibitor of apoptosis proteins (IAPs) can restore defective apoptosis signaling by degrading cIAP1 and cIAP2 proteins and by inhibition of XIAP. Due to the multiple molecular mechanisms-of-action of these targets, responses to IAP antagonist may differ between molecularly distinct colon cancer cells. In this study, responses to the IAP antagonist Birinapant and oxaliplatin/5-fluorouracil (5-FU) were investigated in 14 colon cancer cell lines, representing the consensus molecular subtypes (CMS). Treatment with Birinapant alone did not result in a substantial increase in apoptotic cells in this cell line panel. Annexin-V/PI assays quantified by flow cytometry and high-content screening showed that Birinapant increased responses of CMS1 and partially CMS3 cell lines to oxaliplatin/5-FU, whereas CMS2 cells were not effectively sensitized. FRET-based imaging of caspase-8 and -3 activation validated these differences at the single-cell level, with CMS1 cells displaying sustained activation of caspase-8-like activity during Birinapant and oxaliplatin/5-FU co-treatment, ultimately activating the intrinsic mitochondrial apoptosis pathway. In CMS2 cell lines, Birinapant exhibited synergistic effects in combination with TNFα, suggesting that Birinapant can restore extrinsic apoptosis signaling in the context of inflammatory signals in this subtype. To explore this further, we co-cultured CMS2 and CMS1 colon cancer cells with peripheral blood mononuclear cells. We observed increased cell death during Birinapant single treatment in these co-cultures, which was abrogated by anti-TNFα-neutralizing antibodies. Collectively, our study demonstrates that IAP inhibition is a promising modulator of response to oxaliplatin/5-FU in colorectal cancers of the CMS1 subtype, and may show promise as in the CMS2 subtype, suggesting that molecular subtyping may aid as a patient stratification tool for IAP antagonists in this disease.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Dipeptídeos/uso terapêutico , Indóis/uso terapêutico , Apoptose , Dipeptídeos/farmacologia , Humanos , Indóis/farmacologia
8.
Cell Death Discov ; 6: 61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714568

RESUMO

Pevonedistat (MLN4924), a selective inhibitor of the NEDD8-activating enzyme E1 regulatory subunit (NAE1), has demonstrated significant therapeutic potential in several malignancies. Although multiple mechanisms-of-action have been identified, how MLN4924 induces cell death and its potential as a combinatorial agent with standard-of-care (SoC) chemotherapy in colorectal cancer (CRC) remains largely undefined. In an effort to understand MLN4924-induced cell death in CRC, we identified p53 as an important mediator of the apoptotic response to MLN4924. We also identified roles for the extrinsic (TRAIL-R2/caspase-8) and intrinsic (BAX/BAK) apoptotic pathways in mediating the apoptotic effects of MLN4924 in CRC cells, as well as a role for BID, which modulates a cross-talk between these pathways. Depletion of the anti-apoptotic protein FLIP, which we identify as a novel mediator of resistance to MLN4924, enhanced apoptosis in a p53-, TRAIL-R2/DR5-, and caspase-8-dependent manner. Notably, TRAIL-R2 was involved in potentiating the apoptotic response to MLN4924 in the absence of FLIP, in a ligand-independent manner. Moreoever, when paired with SoC chemotherapies, MLN4924 demonstrated synergy with the irinotecan metabolite SN38. The cell death induced by MLN4924/SN38 combination was dependent on activation of mitochondria through BAX/BAK, but in a p53-independent manner, an important observation given the high frequency of TP53 mutation(s) in advanced CRC. These results uncover mechanisms of cell death induced by MLN4924 and suggest that this second-generation proteostasis-disrupting agent may have its most widespread activity in CRC, in combination with irinotecan-containing treatment regimens.

9.
Proc Natl Acad Sci U S A ; 117(30): 17808-17819, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661168

RESUMO

p53 is the most frequently mutated, well-studied tumor-suppressor gene, yet the molecular basis of the switch from p53-induced cell-cycle arrest to apoptosis remains poorly understood. Using a combination of transcriptomics and functional genomics, we unexpectedly identified a nodal role for the caspase-8 paralog and only human pseudo-caspase, FLIP(L), in regulating this switch. Moreover, we identify FLIP(L) as a direct p53 transcriptional target gene that is rapidly up-regulated in response to Nutlin-3A, an MDM2 inhibitor that potently activates p53. Genetically or pharmacologically inhibiting expression of FLIP(L) using siRNA or entinostat (a clinically relevant class-I HDAC inhibitor) efficiently promoted apoptosis in colorectal cancer cells in response to Nutlin-3A, which otherwise predominantly induced cell-cycle arrest. Enhanced apoptosis was also observed when entinostat was combined with clinically relevant, p53-activating chemotherapy in vitro, and this translated into enhanced in vivo efficacy. Mechanistically, FLIP(L) inhibited p53-induced apoptosis by blocking activation of caspase-8 by the TRAIL-R2/DR5 death receptor; notably, this activation was not dependent on receptor engagement by its ligand, TRAIL. In the absence of caspase-8, another of its paralogs, caspase-10 (also transcriptionally up-regulated by p53), induced apoptosis in Nutlin-3A-treated, FLIP(L)-depleted cells, albeit to a lesser extent than in caspase-8-proficient cells. FLIP(L) depletion also modulated transcription of canonical p53 target genes, suppressing p53-induced expression of the cell-cycle regulator p21 and enhancing p53-induced up-regulation of proapoptotic PUMA. Thus, even in the absence of caspase-8/10, FLIP(L) silencing promoted p53-induced apoptosis by enhancing PUMA expression. Thus, we report unexpected, therapeutically relevant roles for FLIP(L) in determining cell fate following p53 activation.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzamidas/farmacologia , Caspase 8/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Sinergismo Farmacológico , Regulação da Expressão Gênica , Humanos , Imidazóis/metabolismo , Modelos Biológicos , Piperazinas/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Piridinas/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteína Supressora de Tumor p53/genética
10.
Cell Death Differ ; 27(9): 2726-2741, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32313199

RESUMO

TRAIL-R2 (DR5) is a clinically-relevant therapeutic target and a key target for immune effector cells. Herein, we identify a novel interaction between TRAIL-R2 and the Skp1-Cullin-1-F-box (SCF) Cullin-Ring E3 Ubiquitin Ligase complex containing Skp2 (SCFSkp2). We find that SCFSkp2 can interact with both TRAIL-R2's pre-ligand association complex (PLAC) and ligand-activated death-inducing signalling complex (DISC). Moreover, Cullin-1 interacts with TRAIL-R2 in its active NEDDylated form. Inhibiting Cullin-1's DISC recruitment using the NEDDylation inhibitor MLN4924 (Pevonedistat) or siRNA increased apoptosis induction in response to TRAIL. This correlated with enhanced levels of the caspase-8 regulator FLIP at the TRAIL-R2 DISC, particularly the long splice form, FLIP(L). We subsequently found that FLIP(L) (but not FLIP(S), caspase-8, nor the other core DISC component FADD) interacts with Cullin-1 and Skp2. Importantly, this interaction is enhanced when FLIP(L) is in its DISC-associated, C-terminally truncated p43-form. Prevention of FLIP(L) processing to its p43-form stabilises the protein, suggesting that by enhancing its interaction with SCFSkp2, cleavage to the p43-form is a critical step in FLIP(L) turnover. In support of this, we found that silencing any of the components of the SCFSkp2 complex inhibits FLIP ubiquitination, while overexpressing Cullin-1/Skp2 enhances its ubiquitination in a NEDDylation-dependent manner. DISC recruitment of TRAF2, previously identified as an E3 ligase for caspase-8 at the DISC, was also enhanced when Cullin-1's recruitment was inhibited, although its interaction with Cullin-1 was found to be mediated indirectly via FLIP(L). Notably, the interaction of p43-FLIP(L) with Cullin-1 disrupts its ability to interact with FADD, caspase-8 and TRAF2. Collectively, our results suggest that processing of FLIP(L) to p43-FLIP(L) at the TRAIL-R2 DISC enhances its interaction with co-localised SCFSkp2, leading to disruption of p43-FLIP(L)'s interactions with other DISC components and promoting its ubiquitination and degradation, thereby modulating TRAIL-R2-mediated apoptosis.


Assuntos
Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Linhagem Celular Tumoral , Proteínas Culina/metabolismo , Ciclopentanos/farmacologia , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Humanos , Ligação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Proteólise/efeitos dos fármacos , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
11.
EMBO Rep ; 21(3): e49254, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32009295

RESUMO

The long FLIP splice form FLIP(L) can act as both an inhibitor and promoter of caspase-8 at death-inducing signalling complexes (DISCs) formed by death receptors such as TRAIL-R2 and related intracellular complexes such as the ripoptosome. Herein, we describe a revised DISC assembly model that explains how FLIP(L) can have these opposite effects by defining the stoichiometry (with respect to caspase-8) at which it converts from being anti- to pro-apoptotic at the DISC. We also show that in the complete absence of FLIP(L), procaspase-8 activation at the TRAIL-R2 DISC has significantly slower kinetics, although ultimately the extent of apoptosis is significantly greater. This revised model of DISC assembly also explains why FLIP's recruitment to the TRAIL-R2 DISC is impaired in the absence of caspase-8 despite showing that it can interact with the DISC adaptor protein FADD and why the short FLIP splice form FLIP(S) is the more potent inhibitor of DISC-mediated apoptosis.


Assuntos
Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Apoptose/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Caspase 8/genética , Caspase 8/metabolismo , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/genética
12.
Cancer Epidemiol Biomarkers Prev ; 29(3): 539-548, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31915144

RESUMO

BACKGROUND: The gut microbiome, in particular Fusobacterium nucleatum, has been reported to play a role in colorectal cancer development and in patient prognosis. We aimed to perform a systematic review and meta-analysis of published studies to assess the prevalence of F. nucleatum in colorectal tumors and evaluate the association between F. nucleatum and colorectal cancer development and prognosis. METHODS: MEDLINE, EMBASE, and Web of Science databases were systematically searched for studies published until January 2019. Random effects meta-analyses were used to assess the prevalence of F. nucleatum in patients with colorectal cancer or tissues relative to controls and survival in F. nucleatum-positive versus -negative patients. RESULTS: Forty-five relevant articles were identified. Meta-analyses indicated higher odds of F. nucleatum being present in colorectal tissue samples from patients with colorectal cancer [n = 6 studies, pooled OR = 10.06; 95% confidence intervals (CI), 4.48-22.58] and individuals with colorectal polyps (n = 5 studies, pooled OR = 1.83; 95% CI, 1.07-3.16) compared with healthy controls. Similar results were apparent in fecal samples, and when comparing tumor with adjacent normal tissue. Meta-analyses indicated poorer survival in patients with colorectal cancer with high versus low F. nucleatum abundance (n = 5 studies, pooled HR = 1.87; 95% CI, 1.12-3.11). CONCLUSIONS: A consistent increase in the prevalence and/or abundance of F. nucleatum in colorectal cancer tissue and fecal samples compared with controls was apparent. High abundance of F. nucleatum in colorectal tumors was also associated with poorer overall survival. IMPACT: F. nucleatum could be useful as a diagnostic and prognostic marker for colorectal cancer or as a treatment target.


Assuntos
Neoplasias Colorretais/epidemiologia , Infecções por Fusobacterium/epidemiologia , Fusobacterium nucleatum/isolamento & purificação , Microbioma Gastrointestinal , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Fezes/microbiologia , Infecções por Fusobacterium/diagnóstico , Infecções por Fusobacterium/microbiologia , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Prognóstico , Reto/microbiologia , Reto/patologia , Medição de Risco/estatística & dados numéricos , Fatores de Risco
13.
Cell Death Dis ; 9(11): 1081, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30349042

RESUMO

Expression of tumor necrosis factor-α (TNFα) in the serum of prostate cancer patients is associated with poorer outcome and progression to castrate-resistant (CRPC) disease. TNFα promotes the activity of NFκB, which regulates a number of anti-apoptotic and proinflammatory genes, including those encoding the inhibitor of apoptosis proteins (IAPs); however, in the presence of IAP antagonists, TNFα can induce cell death. In the presence of recombinant or macrophage-derived TNFα, we found that IAP antagonists triggered degradation of cIAP1 and induced formation of Complex-IIb, consisting of caspase-8, FADD and RIPK1 in CRPC models; however, no, or modest levels of apoptosis were induced. This resistance was found to be mediated by both the long (L) and short (S) splice forms of the caspase-8 inhibitor, FLIP, another NFκB-regulated protein frequently overexpressed in CRPC. By decreasing FLIP expression at the post-transcriptional level in PC3 and DU145 cells (but not VCaP), the Class-I histone deacetylase (HDAC) inhibitor Entinostat promoted IAP antagonist-induced cell death in these models in a manner dependent on RIPK1, FADD and Caspase-8. Of note, Entinostat primarily targeted the nuclear rather than cytoplasmic pool of FLIP(L). While the cytoplasmic pool of FLIP(L) was highly stable, the nuclear pool was more labile and regulated by the Class-I HDAC target Ku70, which we have previously shown regulates FLIP stability. The efficacy of IAP antagonist (TL32711) and Entinostat combination and their effects on cIAP1 and FLIP respectively were confirmed in vivo, highlighting the therapeutic potential for targeting IAPs and FLIP in proinflammatory CRPC.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Núcleo Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Animais , Caspase 8/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , NF-kappa B/metabolismo , Células PC-3 , Neoplasias de Próstata Resistentes à Castração/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
14.
Cell Death Differ ; 25(11): 1952-1966, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29500433

RESUMO

Apoptosis resistance contributes to treatment failure in colorectal cancer (CRC). New treatments that reinstate apoptosis competency have potential to improve patient outcome but require predictive biomarkers to target them to responsive patient populations. Inhibitor of apoptosis proteins (IAPs) suppress apoptosis, contributing to drug resistance; IAP antagonists such as TL32711 have therefore been developed. We developed a systems biology approach for predicting response of CRC cells to chemotherapy and TL32711 combinations in vitro and in vivo. CRC cells responded poorly to TL32711 monotherapy in vitro; however, co-treatment with 5-fluorouracil (5-FU) and oxaliplatin enhanced TL32711-induced apoptosis. Notably, cells from genetically identical populations responded highly heterogeneously, with caspases being activated both upstream and downstream of mitochondrial outer membrane permeabilisation (MOMP). These data, combined with quantities of key apoptosis regulators were sufficient to replicate in vitro cell death profiles by mathematical modelling. In vivo, apoptosis protein expression was significantly altered, and mathematical modelling for these conditions predicted higher apoptosis resistance that could nevertheless be overcome by combination of chemotherapy and TL32711. Subsequent experimental observations agreed with these predictions, and the observed effects on tumour growth inhibition correlated robustly with apoptosis competency. We therefore obtained insights into intracellular signal transduction kinetics and their population-based heterogeneities for chemotherapy/TL32711 combinations and provide proof-of-concept that mathematical modelling of apoptosis competency can simulate and predict responsiveness in vivo. Being able to predict response to IAP antagonist-based treatments on the background of cell-to-cell heterogeneities in the future might assist in improving treatment stratification approaches for these emerging apoptosis-targeting agents.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Dipeptídeos/farmacologia , Indóis/farmacologia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Dipeptídeos/uso terapêutico , Quimioterapia Combinada , Feminino , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Indóis/uso terapêutico , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Modelos Teóricos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/deficiência , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
15.
Mol Cancer Ther ; 15(10): 2432-2441, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27474150

RESUMO

Resistance to radiotherapy due to insufficient cancer cell death is a significant cause of treatment failure in non-small cell lung cancer (NSCLC). The endogenous caspase-8 inhibitor FLIP is a critical regulator of cell death that is frequently overexpressed in NSCLC and is an established inhibitor of apoptotic cell death induced via the extrinsic death receptor pathway. Apoptosis induced by ionizing radiation (IR) has been considered to be mediated predominantly via the intrinsic apoptotic pathway; however, we found that IR-induced apoptosis was significantly attenuated in NSCLC cells when caspase-8 was depleted using RNA interference (RNAi), suggesting involvement of the extrinsic apoptosis pathway. Moreover, overexpression of wild-type FLIP, but not a mutant form that cannot bind the critical death receptor adaptor protein FADD, also attenuated IR-induced apoptosis, confirming the importance of the extrinsic apoptotic pathway as a determinant of response to IR in NSCLC. Importantly, when FLIP protein levels were downregulated by RNAi, IR-induced cell death was significantly enhanced. The clinically relevant histone deacetylase (HDAC) inhibitors vorinostat and entinostat were subsequently found to sensitize a subset of NSCLC cell lines to IR in a manner that was dependent on their ability to suppress FLIP expression and promote activation of caspase-8. Entinostat also enhanced the antitumor activity of IR in vivo Therefore, FLIP downregulation induced by HDAC inhibitors is a potential clinical strategy to radiosensitize NSCLC and thereby improve response to radiotherapy. Overall, this study provides the first evidence that pharmacological inhibition of FLIP may improve response of NCSLC to IR. Mol Cancer Ther; 15(10); 2432-41. ©2016 AACR.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Tolerância a Radiação , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/efeitos da radiação , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Inibidores de Histona Desacetilases/farmacologia , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Interferência de RNA , RNA Interferente Pequeno/genética , Tolerância a Radiação/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
16.
Oncotarget ; 7(7): 7885-98, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26799286

RESUMO

PTEN loss is prognostic for patient relapse post-radiotherapy in prostate cancer (CaP). Infiltration of tumor-associated macrophages (TAMs) is associated with reduced disease-free survival following radical prostatectomy. However, the association between PTEN loss, TAM infiltration and radiotherapy response of CaP cells remains to be evaluated. Immunohistochemical and molecular analysis of surgically-resected Gleason 7 tumors confirmed that PTEN loss correlated with increased CXCL8 expression and macrophage infiltration. However PTEN status had no discernable correlation with expression of other inflammatory markers by CaP cells, including TNF-α. In vitro, exposure to conditioned media harvested from irradiated PTEN null CaP cells induced chemotaxis of macrophage-like THP-1 cells, a response partially attenuated by CXCL8 inhibition. Co-culture with THP-1 cells resulted in a modest reduction in the radio-sensitivity of DU145 cells. Cytokine profiling revealed constitutive secretion of TNF-α from CaP cells irrespective of PTEN status and IR-induced TNF-α secretion from THP-1 cells. THP-1-derived TNF-α increased NFκB pro-survival activity and elevated expression of anti-apoptotic proteins including cellular inhibitor of apoptosis protein-1 (cIAP-1) in CaP cells, which could be attenuated by pre-treatment with a TNF-α neutralizing antibody. Treatment with a novel IAP antagonist, AT-IAP, decreased basal and TNF-α-induced cIAP-1 expression in CaP cells, switched TNF-α signaling from pro-survival to pro-apoptotic and increased radiation sensitivity of CaP cells in co-culture with THP-1 cells. We conclude that targeting cIAP-1 can overcome apoptosis resistance of CaP cells and is an ideal approach to exploit high TNF-α signals within the TAM-rich microenvironment of PTEN-deficient CaP cells to enhance response to radiotherapy.


Assuntos
Quimiorradioterapia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Macrófagos/patologia , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/radioterapia , Radiossensibilizantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Western Blotting , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/efeitos da radiação , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/efeitos da radiação , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Proteínas Inibidoras de Apoptose/efeitos dos fármacos , Proteínas Inibidoras de Apoptose/metabolismo , Interleucina-8/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/efeitos da radiação , Masculino , Gradação de Tumores , Prognóstico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Raios X
17.
Clin Cancer Res ; 21(14): 3230-3240, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25813020

RESUMO

PURPOSE: Activating mutations in the BRAF oncogene are found in 8% to 15% of colorectal cancer patients and have been associated with poor survival. In contrast with BRAF-mutant (MT) melanoma, inhibition of the MAPK pathway is ineffective in the majority of BRAFMT colorectal cancer patients. Therefore, identification of novel therapies for BRAFMT colorectal cancer is urgently needed. EXPERIMENTAL DESIGN: BRAFMT and wild-type (WT) colorectal cancer models were assessed in vitro and in vivo. Small-molecule inhibitors of MEK1/2, MET, and HDAC were used, overexpression and siRNA approaches were applied, and cell death was assessed by flow cytometry, Western blotting, cell viability, and caspase activity assays. RESULTS: Increased c-MET-STAT3 signaling was identified as a novel adaptive resistance mechanism to MEK inhibitors (MEKi) in BRAFMT colorectal cancer models in vitro and in vivo. Moreover, MEKi treatment resulted in acute increases in transcription of the endogenous caspase-8 inhibitor c-FLIPL in BRAFMT cells, but not in BRAFWT cells, and inhibition of STAT3 activity abrogated MEKi-induced c-FLIPL expression. In addition, treatment with c-FLIP-specific siRNA or HDAC inhibitors abrogated MEKi-induced upregulation of c-FLIPL expression and resulted in significant increases in MEKi-induced cell death in BRAFMT colorectal cancer cells. Notably, combined HDAC inhibitor/MEKi treatment resulted in dramatically attenuated tumor growth in BRAFMT xenografts. CONCLUSIONS: Our findings indicate that c-MET/STAT3-dependent upregulation of c-FLIPL expression is an important escape mechanism following MEKi treatment in BRAFMT colorectal cancer. Thus, combinations of MEKi with inhibitors of c-MET or c-FLIP (e.g., HDAC inhibitors) could be potential novel treatment strategies for BRAFMT colorectal cancer.


Assuntos
Antineoplásicos/farmacologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/biossíntese , Neoplasias Colorretais/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Linhagem Celular Tumoral , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , MAP Quinase Quinase Quinases , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas B-raf/genética , RNA Interferente Pequeno , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncotarget ; 5(6): 1609-20, 2014 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-24742492

RESUMO

TBX2 is an oncogenic transcription factor known to drive breast cancer proliferation. We have identified the cysteine protease inhibitor Cystatin 6 (CST6) as a consistently repressed TBX2 target gene, co-repressed through a mechanism involving Early Growth Response 1 (EGR1). Exogenous expression of CST6 in TBX2-expressing breast cancer cells resulted in significant apoptosis whilst non-tumorigenic breast cells remained unaffected. CST6 is an important tumor suppressor in multiple tissues, acting as a dual protease inhibitor of both papain-like cathepsins and asparaginyl endopeptidases (AEPs) such as Legumain (LGMN). Mutation of the CST6 LGMN-inhibitory domain completely abrogated its ability to induce apoptosis in TBX2-expressing breast cancer cells, whilst mutation of the cathepsin-inhibitory domain or treatment with a pan-cathepsin inhibitor had no effect, suggesting that LGMN is the key oncogenic driver enzyme. LGMN activity assays confirmed the observed growth inhibitory effects were consistent with CST6 inhibition of LGMN. Knockdown of LGMN and the only other known AEP enzyme (GPI8) by siRNA confirmed that LGMN was the enzyme responsible for maintaining breast cancer proliferation. CST6 did not require secretion or glycosylation to elicit its cell killing effects, suggesting an intracellular mode of action. Finally, we show that TBX2 and CST6 displayed reciprocal expression in a cohort of primary breast cancers with increased TBX2 expression associating with increased metastases. We have also noted that tumors with altered TBX2/CST6 expression show poor overall survival. This novel TBX2-CST6-LGMN signaling pathway, therefore, represents an exciting opportunity for the development of novel therapies to target TBX2 driven breast cancers.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Cistatina M/genética , Cisteína Endopeptidases/metabolismo , Proteínas com Domínio T/metabolismo , Apoptose , Western Blotting , Neoplasias da Mama/genética , Imunoprecipitação da Cromatina , Cistatina M/metabolismo , Cisteína Endopeptidases/genética , Feminino , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Glicosilação , Humanos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Proteínas com Domínio T/antagonistas & inibidores , Proteínas com Domínio T/genética , Células Tumorais Cultivadas
19.
Nucleic Acids Res ; 41(18): 8601-14, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23863842

RESUMO

Here, we show for the first time, that the familial breast/ovarian cancer susceptibility gene BRCA1 activates the Notch pathway in breast cells by transcriptional upregulation of Notch ligands and receptors in both normal and cancer cells. We demonstrate through chromatin immunoprecipitation assays that BRCA1 is localized to a conserved intronic enhancer region within the Notch ligand Jagged-1 (JAG1) gene, an event requiring ΔNp63. We propose that this BRCA1/ΔNp63-mediated induction of JAG1 may be important the regulation of breast stem/precursor cells, as knockdown of all three proteins resulted in increased tumoursphere growth and increased activity of stem cell markers such as Aldehyde Dehydrogenase 1 (ALDH1). Knockdown of Notch1 and JAG1 phenocopied BRCA1 knockdown resulting in the loss of Estrogen Receptor-α (ER-α) expression and other luminal markers. A Notch mimetic peptide could activate an ER-α promoter reporter in a BRCA1-dependent manner, whereas Notch inhibition using a γ-secretase inhibitor reversed this process. We demonstrate that inhibition of Notch signalling resulted in decreased sensitivity to the anti-estrogen drug Tamoxifen but increased expression of markers associated with basal-like breast cancer. Together, these findings suggest that BRCA1 transcriptional upregulation of Notch signalling is a key event in the normal differentiation process in breast tissue.


Assuntos
Proteína BRCA1/fisiologia , Neoplasias da Mama/genética , Mama/metabolismo , Receptores Notch/genética , Animais , Mama/citologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Antagonistas de Estrogênios/farmacologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Células MCF-7 , Proteínas de Membrana/genética , Camundongos , Receptor Notch1/genética , Receptores Notch/biossíntese , Receptores Notch/metabolismo , Proteínas Serrate-Jagged , Transdução de Sinais/genética , Tamoxifeno/farmacologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Proteínas Supressoras de Tumor/fisiologia , Regulação para Cima
20.
Cancer Res ; 71(5): 1933-44, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21363924

RESUMO

Little is known about the origin of basal-like breast cancers, an aggressive disease that is highly similar to BRCA1-mutant breast cancers. p63 family proteins that are structurally related to the p53 suppressor protein are known to function in stem cell regulation and stratified epithelia development in multiple tissues, and p63 expression may be a marker of basal-like breast cancers. Here we report that ΔNp63 isoforms of p63 are transcriptional targets for positive regulation by BRCA1. Our analyses of breast cancer tissue microarrays and BRCA1-modulated breast cancer cell lines do not support earlier reports that p63 is a marker of basal-like or BRCA1 mutant cancers. Nevertheless, we found that BRCA1 interacts with the specific p63 isoform ΔNp63γ along with transcription factor isoforms AP-2α and AP-2γ. BRCA1 required ΔNp63γ and AP-2γ to localize to an intronic enhancer region within the p63 gene to upregulate transcription of the ΔNp63 isoforms. In mammary stem/progenitor cells, siRNA-mediated knockdown of ΔNp63 expression resulted in genomic instability, increased cell proliferation, loss of DNA damage checkpoint control, and impaired growth control. Together, our findings establish that transcriptional upregulation of ΔNp63 proteins is critical for BRCA1 suppressor function and that defects in BRCA1-ΔNp63 signaling are key events in the pathogenesis of basal-like breast cancer.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/genética , Transativadores/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Imunoprecipitação da Cromatina , Feminino , Imunofluorescência , Expressão Gênica , Humanos , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos , Transativadores/biossíntese , Fatores de Transcrição , Transfecção , Proteínas Supressoras de Tumor/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...