Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(23): 232502, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603173

RESUMO

We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden nonunique ß-decay transition ^{137}Xe(7/2^{-})→^{137}Cs(7/2^{+}). The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultralow background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal to background ratio of more than 99 to 1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden nonunique ß-decay shape, this work constitutes a novel test of the calculated electron spectral shapes in the context of the reactor antineutrino anomaly and spectral bump.

2.
Phys Rev Lett ; 123(16): 161802, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31702371

RESUMO

A search for neutrinoless double-ß decay (0νßß) in ^{136}Xe is performed with the full EXO-200 dataset using a deep neural network to discriminate between 0νßß and background events. Relative to previous analyses, the signal detection efficiency has been raised from 80.8% to 96.4±3.0%, and the energy resolution of the detector at the Q value of ^{136}Xe 0νßß has been improved from σ/E=1.23% to 1.15±0.02% with the upgraded detector. Accounting for the new data, the median 90% confidence level 0νßß half-life sensitivity for this analysis is 5.0×10^{25} yr with a total ^{136}Xe exposure of 234.1 kg yr. No statistically significant evidence for 0νßß is observed, leading to a lower limit on the 0νßß half-life of 3.5×10^{25} yr at the 90% confidence level.

3.
Phys Rev Lett ; 120(7): 072701, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29542972

RESUMO

Results from a search for neutrinoless double-beta decay (0νßß) of ^{136}Xe are presented using the first year of data taken with the upgraded EXO-200 detector. Relative to previous searches by EXO-200, the energy resolution of the detector has been improved to σ/E=1.23%, the electric field in the drift region has been raised by 50%, and a system to suppress radon in the volume between the cryostat and lead shielding has been implemented. In addition, analysis techniques that improve topological discrimination between 0νßß and background events have been developed. Incorporating these hardware and analysis improvements, the median 90% confidence level 0νßß half-life sensitivity after combining with the full data set acquired before the upgrade has increased twofold to 3.7×10^{25} yr. No statistically significant evidence for 0νßß is observed, leading to a lower limit on the 0νßß half-life of 1.8×10^{25} yr at the 90% confidence level.

4.
Rev Sci Instrum ; 85(9): 095114, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25273779

RESUMO

We describe a system to transport and identify barium ions produced in liquid xenon, as part of R&D towards the second phase of a double beta decay experiment, nEXO. The goal is to identify the Ba ion resulting from an extremely rare nuclear decay of the isotope (136)Xe, hence providing a confirmation of the occurrence of the decay. This is achieved through Resonance Ionization Spectroscopy (RIS). In the test setup described here, Ba ions can be produced in liquid xenon or vacuum and collected on a clean substrate. This substrate is then removed to an analysis chamber under vacuum, where laser-induced thermal desorption and RIS are used with time-of-flight mass spectroscopy for positive identification of the barium decay product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...