Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(2): 727-743, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009920

RESUMO

Poales are one of the most species-rich, ecologically and economically important orders of plants and often characterise open habitats, enabled by unique suites of traits. We test six hypotheses regarding the evolution and assembly of Poales in open and closed habitats throughout the world, and examine whether diversification patterns demonstrate parallel evolution. We sampled 42% of Poales species and obtained taxonomic and biogeographic data from the World Checklist of Vascular Plants database, which was combined with open/closed habitat data scored by taxonomic experts. A dated supertree of Poales was constructed. We integrated spatial phylogenetics with regionalisation analyses, historical biogeography and ancestral state estimations. Diversification in Poales and assembly of open and closed habitats result from dynamic evolutionary processes that vary across lineages, time and space, most prominently in tropical and southern latitudes. Our results reveal parallel and recurrent patterns of habitat and trait transitions in the species-rich families Poaceae and Cyperaceae. Smaller families display unique and often divergent evolutionary trajectories. The Poales have achieved global dominance via parallel evolution in open habitats, with notable, spatially and phylogenetically restricted divergences into strictly closed habitats.


Assuntos
Ecossistema , Poaceae , Filogenia , Evolução Biológica
2.
Front Plant Sci ; 14: 1063174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959945

RESUMO

Sapindales is an angiosperm order of high economic and ecological value comprising nine families, c. 479 genera, and c. 6570 species. However, family and subfamily relationships in Sapindales remain unclear, making reconstruction of the order's spatio-temporal and morphological evolution difficult. In this study, we used Angiosperms353 target capture data to generate the most densely sampled phylogenetic trees of Sapindales to date, with 448 samples and c. 85% of genera represented. The percentage of paralogous loci and allele divergence was characterized across the phylogeny, which was time-calibrated using 29 rigorously assessed fossil calibrations. All families were supported as monophyletic. Two core family clades subdivide the order, the first comprising Kirkiaceae, Burseraceae, and Anacardiaceae, the second comprising Simaroubaceae, Meliaceae, and Rutaceae. Kirkiaceae is sister to Burseraceae and Anacardiaceae, and, contrary to current understanding, Simaroubaceae is sister to Meliaceae and Rutaceae. Sapindaceae is placed with Nitrariaceae and Biebersteiniaceae as sister to the core Sapindales families, but the relationships between these families remain unclear, likely due to their rapid and ancient diversification. Sapindales families emerged in rapid succession, coincident with the climatic change of the Mid-Cretaceous Hothouse event. Subfamily and tribal relationships within the major families need revision, particularly in Sapindaceae, Rutaceae and Meliaceae. Much of the difficulty in reconstructing relationships at this level may be caused by the prevalence of paralogous loci, particularly in Meliaceae and Rutaceae, that are likely indicative of ancient gene duplication events such as hybridization and polyploidization playing a role in the evolutionary history of these families. This study provides key insights into factors that may affect phylogenetic reconstructions in Sapindales across multiple scales, and provides a state-of-the-art phylogenetic framework for further research.

3.
Biodivers Data J ; 8: e51094, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508510

RESUMO

Background The Sunda-Sahul Convergence Zone, defined here as the area comprising Australia, New Guinea, and Southeast Asia (Indonesia to Myanmar), straddles the Sunda and Sahul continental shelves and is one of the most biogeographically famous and important regions in the world. Floristically, it is thought to harbour a large amount of the world's diversity. Despite the importance of the area, a checklist of the flora has never before been published. Here we present the first working checklist of vascular plants for the Sunda-Sahul Convergence Zone. The list was compiled from 24 flora volumes, online databases and unpublished plot data. Taxonomic nomenclature was updated, and each species was coded into nested biogeographic regions. The list includes 60,415 species in 5,135 genera and 363 families of vascular plants. New information This is the first species-level checklist of the region and presents an updated census of the region's floristic biodiversity. The checklist confirms that species richness of the SSCZ is comparable to that of the Neotropics, and highlights areas in need of further documentation and taxonomic work. This checklist provides a novel dataset for studying floristic ecology and evolution in this biogeographically important region of very high global biodiversity.

4.
Ecol Appl ; 29(1): e01824, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30390399

RESUMO

The need to proactively manage landscapes and species to aid their adaptation to climate change is widely acknowledged. Current approaches to prioritizing investment in species conservation generally rely on correlative models, which predict the likely fate of species under different climate change scenarios. Yet, while model statistics can be improved by refining modeling techniques, gaps remain in understanding the relationship between model performance and ecological reality. To investigate this, we compared standard correlative species distribution models to highly accurate, fine-scale, distribution models. We critically assessed the ecological realism of each species' model, using expert knowledge of the geography and habitat in the study area and the biology of the study species. Using interactive software and an iterative vetting with experts, we identified seven general principles that explain why the distribution modeling under- or overestimated habitat suitability, under both current and predicted future climates. Importantly, we found that, while temperature estimates can be dramatically improved through better climate downscaling, many models still inaccurately reflected moisture availability. Furthermore, the correlative models did not account for biotic factors, such as disease or competitor species, and were unable to account for the likely presence of micro refugia. Under-performing current models resulted in widely divergent future projections of species' distributions. Expert vetting identified regions that were likely to contain micro refugia, even where the fine-scale future projections of species distributions predicted population losses. Based on the results, we identify four priority conservation actions required for more effective climate change adaptation responses. This approach to improving the ecological realism of correlative models to understand climate change impacts on species can be applied broadly to improve the evidence base underpinning management responses.


Assuntos
Mudança Climática , Ecossistema , Ecologia , Previsões , Temperatura
5.
Mol Phylogenet Evol ; 118: 32-46, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28888790

RESUMO

The Australian mesic biome spans c. 33° of latitude along Australia's east coast and ranges and is dissected by historical and contemporary biogeographical barriers. To investigate the impact of these barriers on evolutionary diversification and to predict the impact of future climate change on the distribution of species and genetic diversity within this biome, we inferred phylogenetic relationships within the Dendrobium speciosum complex (Orchidaceae) across its distribution and undertook environmental niche modelling (ENM) under past, contemporary and projected future climates. Neighbor Joining tree inference, NeighborNet and Structure analyses of Amplified Fragment Length Polymorphism (AFLP) profiles for D. speciosum sampled from across its distribution showed that the complex consists of two highly supported main groups that are geographically separated by the St. Lawrence gap, an area of dry sclerophyll forest and woodland. The presence of several highly admixed individuals identified by the Structure analysis provided evidence of genetic exchange between the two groups across this gap. Whereas previous treatments have recognised between one to eleven species, the molecular results support the taxonomic treatment of the complex as a single species with two subspecies. The ENM analysis supported the hypothesis that lineage divergence within the complex was driven by past climatic changes. The St. Lawrence gap represented a stronger biogeographic barrier for the D. speciosum complex during the cool and dry glacial climatic conditions of the Pleistocene than under today's interglacial conditions. Shallow genetic divergence was found within the two lineages, which mainly corresponded to three other biogeographic barriers: the Black Mountain Corridor, Glass House Mountains and the Hunter Valley. Our ENM analyses provide further support for the hypothesis that biogeographic barriers along Australia's east coast were somewhat permeable to genetic exchange due to past episodic range expansions and contractions caused by climatic change resulting in recurrent contact between previously isolated populations. An overall southward shift in the distribution of the complex under future climate scenarios was predicted, with the strongest effects on the northern lineage. This study contributes to our understanding of the factors shaping biodiversity patterns in Australia's mesic biome.


Assuntos
Dendrobium/classificação , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Austrália , Evolução Biológica , Mudança Climática , DNA de Plantas/química , DNA de Plantas/metabolismo , Dendrobium/genética , Ecossistema , Variação Genética , Filogenia
6.
PLoS One ; 11(6): e0155118, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27304905

RESUMO

The taxonomic status of a single island, narrow range endemic plant species from Palau, Micronesia (Timonius salsedoi) was assessed using DNA barcode markers, additional plastid loci, and morphology in order to verify its conservation status. DNA barcode loci distinguished T. salsedoi from all other Timonius species sampled from Palau, and were supported by sequence data from the atpB-rbcL intergenic spacer region. Timonius salsedoi was only known from two mature individual trees in 2012. Due to its extremely narrow range and population size, it had previously been recommended to be listed as Critically Endangered Status under three separate IUCN Criteria. In 2014 a second survey of the population following a typhoon revealed that the only two known trees had died suggesting that this species may now be extinct. Comprehensive follow up surveys of suitable habitat for this species are urgently required.


Assuntos
Conservação dos Recursos Naturais/métodos , Código de Barras de DNA Taxonômico/métodos , Rubiaceae/genética , Árvores/genética , DNA de Plantas/química , DNA de Plantas/genética , Espécies em Perigo de Extinção , Extinção Biológica , Genomas de Plastídeos/genética , Geografia , Oceano Pacífico , Palau , Filogenia , Densidade Demográfica , Ribulose-Bifosfato Carboxilase/genética , Rubiaceae/anatomia & histologia , Rubiaceae/classificação , Análise de Sequência de DNA , Especificidade da Espécie , Árvores/anatomia & histologia , Árvores/classificação
7.
Curr Opin Plant Biol ; 31: 109-17, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27088716

RESUMO

In the flora of Australia, the driest vegetated continent, crassulacean acid metabolism (CAM), the most water-use efficient form of photosynthesis, is documented in only 0.6% of native species. Most are epiphytes and only seven terrestrial. However, much of Australia is unsurveyed, and carbon isotope signature, commonly used to assess photosynthetic pathway diversity, does not distinguish between plants with low-levels of CAM and C3 plants. We provide the first census of CAM for the Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of terrestrial CAM species probably 10-fold greater. Still unresolved is the question why the large stem-succulent life - form is absent from the native Australian flora even though exotic large cacti have successfully invaded and established in Australia.


Assuntos
Plantas/metabolismo , Austrália , Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia
8.
Biodivers Data J ; (4): e7599, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27099552

RESUMO

BACKGROUND: Full floristic data, tree demography, and biomass estimates incorporating non-tree lifeforms are seldom collected and reported for forest plots in the tropics. Established research stations serve as important repositories of such biodiversity and ecological data. With a canopy crane setup within a tropical lowland rainforest estate, the 42-ha Daintree Rainforest Observatory (DRO) in Cape Tribulation, northern Australia is a research facility of international significance. We obtained an estimate of the vascular plant species richness for the site, by surveying all vascular plant species from various mature-phase, remnant and open vegetation patches within the site. We also integrate and report the demography and basal areas of trees ≥ 10 cm diameter at breast height (dbh) in a new 1-ha core plot, an extension to the pre-existing forest 1-ha plot under the canopy crane. In addition, we report for the canopy crane plot new demography and basal areas for smaller-size shrubs and treelets subsampled from nine 20 m(2) quadrats, and liana basal area and abundance from the whole plot. The DRO site has an estimated total vascular plant species richness of 441 species, of which 172 species (39%) are endemic to Australia, and 4 species are endemics to the Daintree region. The 2 x 1-ha plots contains a total of 262 vascular plant species of which 116 (1531 individuals) are tree species ≥ 10 cm dbh. We estimate a stem basal area of 34.9 m(2) ha(-1), of which small stems (tree saplings and shrubs <10cm dbh) and lianas collectively contribute c.4.2%. Comparing the stem density-diversity patterns of the DRO forest with other tropical rainforests globally, our meta-analysis shows that DRO forests has a comparatively high stem density and moderate species diversity, due to the influence of cyclones. These data will provide an important foundation for ecological and conservation studies in lowland tropical forest. NEW INFORMATION: We present a floristic checklist, a lifeform breakdown, and demography data from two 1-ha rainforest plots from a lowland tropical rainforest study site. We also present a meta-analysis of stem densities and species diversity from comparable-sized plots across the tropics.

9.
Mol Phylogenet Evol ; 96: 33-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26718058

RESUMO

Tropical and subtropical amphi-Pacific disjunction is among the most fascinating distribution patterns, but received little attention. Here we use the fossil-rich Cinnamomum group, a primarily tropical and subtropical Asian lineage with some species distributed in Neotropics, Australasia and Africa to shed light upon this disjunction pattern. Phylogenetic and biogeographic analyses were carried out using sequences of three nuclear loci from 94 Cinnamomum group and 13 outgroup samples. Results show that although there are three clades within a monophyletic Cinnamomum group, Cinnamomum and previously recognized subdivisions within this genus were all rejected as natural groups. The Cinnamomum group appears to have originated in the widespread boreotropical paleoflora of Laurasia during the early Eocene (ca. 55Ma). The formation and breakup of the boreotropics seems to have then played a key role in the formation of intercontinental disjunctions within the Cinnamomum group. The first cooling interval (50-48Ma) in the late early Eocene resulted in a floristic discontinuity between Eurasia and North America causing the tropical and subtropical amphi-Pacific disjunction. The second cooling interval in the mid-Eocene (42-38Ma) resulted in the fragmentation of the boreotropics within Eurasia, leading to an African-Asian disjunction. Multiple dispersal events from North into South America occurred from the early Eocene to late Miocene and a single migration event from Asia into Australia appears to have occurred in the early Miocene.


Assuntos
Cânfora , Cinnamomum/química , Cinnamomum/genética , Filogenia , África , Ásia , Australásia , Cinnamomum/classificação , Europa (Continente) , Evolução Molecular , Fósseis , América do Norte , Filogeografia , América do Sul
10.
Genetica ; 142(3): 251-64, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24898671

RESUMO

Contrasting signals of genetic divergence due to historic and contemporary gene flow were inferred for Coachwood, Ceratopetalum apetalum (Cunoniaceae), a wind-dispersed canopy tree endemic to eastern Australian warm temperate rainforest. Analysis of nine nuclear microsatellites across 22 localities revealed two clusters between northern and southern regions and with vicariance centred on the wide Hunter River Valley. Within populations diversity was high indicating a relatively high level of pollen dispersal among populations. Genetic variation was correlated to differences in regional biogeography and ecology corresponding to IBRA regions, primary factors being soil type and rainfall. Eleven haplotypes were identified by chloroplast microsatellite analysis from the same 22 localities. A lack of chloroplast diversity within sites demonstrates limited gene flow via seed dispersal. Network representation indicated regional sharing of haplotypes indicative of multiple Pleistocene refugia as well as deep divergences between regional elements of present populations. Chloroplast differentiation between sites in the upper and lower sections of the northern population is reflective of historic vicariance at the Clarence River Corridor. There was no simple vicariance explanation for the distribution of the divergent southern chlorotype, but its distribution may be explained by the effects of drift from a larger initial gene pool. Both the Hunter and Clarence River Valleys represent significant dry breaks within the species range, consistent with this species being rainfall dependent rather than cold-adapted.


Assuntos
Fluxo Gênico , Variação Genética , Magnoliopsida/genética , Repetições de Microssatélites , Dispersão Vegetal , Austrália , Pool Gênico , Genoma de Cloroplastos , Haplótipos , Magnoliopsida/fisiologia , Filogeografia , Polinização , Floresta Úmida
11.
Mol Phylogenet Evol ; 71: 55-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24513576

RESUMO

We present an integrative model predicting associations among epiphytism, the tank habit, entangling seeds, C3 vs. CAM photosynthesis, avian pollinators, life in fertile, moist montane habitats, and net rates of species diversification in the monocot family Bromeliaceae. We test these predictions by relating evolutionary shifts in form, physiology, and ecology to time and ancestral distributions, quantifying patterns of correlated and contingent evolution among pairs of traits and analyzing the apparent impact of individual traits on rates of net species diversification and geographic expansion beyond the ancestral Guayana Shield. All predicted patterns of correlated evolution were significant, and the temporal and spatial associations of phenotypic shifts with orogenies generally accorded with predictions. Net rates of species diversification were most closely coupled to life in fertile, moist, geographically extensive cordilleras, with additional significant ties to epiphytism, avian pollination, and the tank habit. The highest rates of net diversification were seen in the bromelioid tank-epiphytic clade (D(crown) = 1.05 My⁻¹), associated primarily with the Serra do Mar and nearby ranges of coastal Brazil, and in the core tillandsioids (D(crown) = 0.67 My⁻¹), associated primarily with the Andes and Central America. Six large-scale adaptive radiations and accompanying pulses of speciation account for 86% of total species richness in the family. This study is among the first to test a priori hypotheses about the relationships among phylogeny, phenotypic evolution, geographic spread, and net species diversification, and to argue for causality to flow from functional diversity to spatial expansion to species diversity.


Assuntos
Adaptação Biológica , Bromeliaceae/genética , Filogenia , Biodiversidade , América Latina , Sudoeste dos Estados Unidos
12.
Mol Phylogenet Evol ; 66(1): 203-14, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23044402

RESUMO

The origins and evolutionary history of the New Zealand flora has been the subject of much debate. The recent description of Cyathodophyllum novaezelandieae from early Miocene sediments in New Zealand provides possible evidence for the antiquity of the fleshy fruited epacrids (tribe Styphelieae, Ericaceae) in New Zealand. Yet the extant species in this tribe are thought to be very closely related to or conspecific with Australian taxa, suggesting recent trans-Tasman origins. In order to investigate the origins and evolution of the extant New Zealand Styphelieae we produced molecular phylogenetic trees based on sequences of three plastid regions that include representatives of all the genera of the tribe and eight of the ten New Zealand species. We estimated the range of minimum ages of the New Zealand lineages with Bayesian relaxed-clock analyses using different calibration methods and relative dating. We found strong support for each of the eight extant species of New Zealand Styphelieae being a distinct lineage that is nested within an Australian clade. In all except one case the sister is from Tasmania and/or the east coast of mainland Australia; for Acrothamnus colensoi the sister is in New Guinea. Estimated dates indicate that all of the New Zealand lineages diverged from their non-New Zealand sisters within the last 7 Ma. Time discontinuity between the fossil C.novae-zelandiae (20-23 Ma) and the origins of the extant New Zealand lineages (none older than 5 Ma) indicates that the fossil and extant Styphelieae in New Zealand are not related. The relative dating analysis showed that to accept this relationship, it would be necessary to accept that the Styphelieae arose in the early-mid Mesozoic (210-120 Ma), which is starkly at odds with multiple lines of evidence on the age of Ericales and indeed the angiosperms. Therefore, our results do not support the hypothesis that Styphelieae have been continuously present in New Zealand since the early Miocene. Instead they suggest a historical biogeographical scenario in which the lineage to which C. novae-zelandiae belongs went extinct in New Zealand, and the extant New Zealand Styphelieae are derived from Australian lineages that recolonised (presumably by long distance dispersal) no earlier than the late Miocene to Pliocene.


Assuntos
Evolução Biológica , Ericaceae/classificação , Filogenia , Teorema de Bayes , DNA de Cloroplastos/genética , DNA de Plantas/genética , Ericaceae/genética , Extinção Biológica , Fósseis , Funções Verossimilhança , Nova Zelândia
13.
Mol Phylogenet Evol ; 62(1): 146-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21967784

RESUMO

For the predominantly southern hemisphere plant group Styphelioideae (Ericaceae) published sequence datasets of five markers are now available for all except one of the 38 recognised genera. However, several markers are highly incomplete therefore missing data is problematic for producing a genus level phylogeny. We explore the relative utility of supertree and supermatrix approaches for addressing this challenge, and examine the effects of missing data on tree topology and resolution. Although the supertree approach returned a more conservative hypothesis, overall, both supermatrix and supertree analyses concurred in the topologies they returned. Using multiple genes and a dataset of variably complete taxa we found improved support for the monophyly and position of the tribes and genus level relationships. However, there was mixed support for the Richeeae tribe appearing one node basal to the Cosmelieae tribe or vice versa. It is probable that this will only be resolved through further sequencing. Our study supports previous findings that the amount of data is more critical than the completeness of the dataset in estimating well-resolved trees. Our results suggest that a "serendipitous" scaffolding approach that includes a mixture of well and poorly sequenced taxa can lead to robust phylogenetic hypotheses.


Assuntos
Ericaceae/classificação , Ericaceae/genética , Filogenia , Teorema de Bayes , DNA Espaçador Ribossômico/genética , Funções Verossimilhança , Modelos Genéticos , Tipagem de Sequências Multilocus , Proteínas de Plantas/genética , RNA Ribossômico 18S/genética , Alinhamento de Sequência
14.
Am J Bot ; 98(5): 872-95, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21613186

RESUMO

PREMISE: Bromeliaceae form a large, ecologically diverse family of angiosperms native to the New World. We use a bromeliad phylogeny based on eight plastid regions to analyze relationships within the family, test a new, eight-subfamily classification, infer the chronology of bromeliad evolution and invasion of different regions, and provide the basis for future analyses of trait evolution and rates of diversification. METHODS: We employed maximum-parsimony, maximum-likelihood, and Bayesian approaches to analyze 9341 aligned bases for four outgroups and 90 bromeliad species representing 46 of 58 described genera. We calibrate the resulting phylogeny against time using penalized likelihood applied to a monocot-wide tree based on plastid ndhF sequences and use it to analyze patterns of geographic spread using parsimony, Bayesian inference, and the program S-DIVA. RESULTS: Bromeliad subfamilies are related to each other as follows: (Brocchinioideae, (Lindmanioideae, (Tillandsioideae, (Hechtioideae, (Navioideae, (Pitcairnioideae, (Puyoideae, Bromelioideae))))))). Bromeliads arose in the Guayana Shield ca. 100 million years ago (Ma), spread centrifugally in the New World beginning ca. 16-13 Ma, and dispersed to West Africa ca. 9.3 Ma. Modern lineages began to diverge from each other roughly 19 Ma. CONCLUSIONS: Nearly two-thirds of extant bromeliads belong to two large radiations: the core tillandsioids, originating in the Andes ca. 14.2 Ma, and the Brazilian Shield bromelioids, originating in the Serro do Mar and adjacent regions ca. 9.1 Ma.


Assuntos
Bromeliaceae/genética , Evolução Molecular , Filogenia , Plastídeos/genética , Teorema de Bayes , Evolução Biológica , Bromeliaceae/classificação , DNA de Plantas/genética , Genes de Plantas , Funções Verossimilhança , Dados de Sequência Molecular , NADH Desidrogenase/genética , Proteínas de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de DNA
15.
Mol Ecol Resour ; 8(4): 867-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21585915

RESUMO

We identified 11 informative microsatellite loci in Tetratheca ericifolia from an (AG)(n) -enriched library. Using these loci on 32 individuals from two populations (16 individuals from each), we detected an average of 11.3 alleles per locus (range of five to 21, average expected heterozygosity of 0.728), of which 56% were unique to one population or the other. All loci were amplifiable in seven to 12 of a further 12 species of Tetratheca under the same reaction conditions. The markers will be useful tools for evolutionary studies of this Australian endemic group.

17.
Am J Bot ; 93(9): 1328-42, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21642198

RESUMO

To better understand the historical biogeography of the southern hemisphere and evolutionary responses of plants to aridity, we undertook a detailed phylogenetic study of the predominantly southern family Elaeocarpaceae sensu lato (including Tremandraceae). Plastid trnL-trnF and nuclear ITS sequence data were analyzed using parsimony and Bayesian methods and molecular evolutionary rates calibrated using the Oligocene fossil record of Elaeocarpus mesocarps to estimate the minimum divergence dates. The results indicate the monophyly of all recognized genera and a placement for the former Tremandraceae (three genera and about 49 species of shrubby, dry-adapted Australian plants) within the widespread predominantly rainforest tree family Elaeocarpaceae (nine genera, over 500 species). The former Tremandraceae clade diverged from its sister (Aceratium + Elaeocarpus + Sericolea) during the Paleocene, after which it underwent a marked acceleration in evolutionary rate. Furthermore, this lineage diversified during the late Miocene, coincident with widespread aridification in Australian environments and extensive radiations of several sclerophyllous groups. The role of dispersal in explaining the current geographical distribution of Elaeocarpaceae is illustrated by Aristotelia. This genus, whose distribution was previously thought to reflect Gondwanan vicariance, is shown to have arrived in New Zealand from Australia at least 6-7 million yr ago.

18.
Proc Natl Acad Sci U S A ; 101(10): 3703-8, 2004 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-14982989

RESUMO

The large Neotropical family Bromeliaceae presents an outstanding example of adaptive radiation in plants, containing a wide range of terrestrial and epiphytic life-forms occupying many distinct habitats. Diversification in bromeliads has been linked to several key innovations, including water- and nutrient-impounding phytotelmata, absorptive epidermal trichomes, and the water-conserving mode of photosynthesis known as crassulacean acid metabolism (CAM). To clarify the origins of CAM and the epiphytic habit, we conducted a phylogenetic analysis of nucleotide sequences for 51 bromeliad taxa by using the plastid loci matK and the rps16 intron, combined with a survey of photosynthetic pathway determined by carbon-isotope ratios for 1,873 species representing 65% of the family. Optimization of character-states onto the strict consensus tree indicated that the last common ancestor of Bromeliaceae was a terrestrial C(3) mesophyte, probably adapted to moist, exposed, nutrient-poor habitats. Both CAM photosynthesis and the epiphytic habit evolved a minimum of three times in the family, most likely in response to geological and climatic changes in the late Tertiary. The great majority of epiphytic forms are now found in two lineages: in subfamily Tillandsioideae, in which C(3) photosynthesis was the ancestral state and CAM developed later in the most extreme epiphytes, and in subfamily Bromelioideae, in which CAM photosynthesis predated the appearance of epiphytism. Subsequent radiation of the bromelioid line into less xeric habitats has led to reversion to C(3) photosynthesis in some taxa, showing that both gain and loss of CAM have occurred in the complex evolutionary history of this family.


Assuntos
Bromeliaceae/genética , Bromeliaceae/metabolismo , Fotossíntese , Bromeliaceae/classificação , Meio Ambiente , Genes de Plantas , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...