Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haemophilia ; 29(6): 1556-1564, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37674358

RESUMO

AIM: An open-label phase 2/3 study of plasminogen, human-tvmh administered intravenously in paediatric and adult subjects with type 1 plasminogen deficiency was conducted. Interim data was previously reported. The final data on 15 subjects who completed the study up to a maximum of 124 weeks are reported here. METHODS: The primary objectives were to evaluate efficacy of plasminogen replacement therapy on clinically evident or visible lesions during 48 weeks of dosing and to achieve an increase in trough plasminogen activity levels by at least an absolute 10% above baseline during 12 weeks of treatment. RESULTS: The primary efficacy endpoint was achieved, as 100% of subjects (n = 11) with visible and assessable non-visible lesions at baseline demonstrated ≥ 50% improvement after 48 weeks of study drug treatment with plasminogen, human-tvmh. All subjects achieved the targeted ≥ 10% increase in trough plasminogen activity above baseline through Week 12. Plasminogen, human-tvmh at a dose of 6.6 mg/kg administered every 2-5 days for 48 weeks and every 1-7 days for up to 124 weeks was well tolerated. CONCLUSION: This study provides additional evidence regarding the long-term safety and clinical utility of replacement therapy with human plasminogen for the treatment of children and adults with type 1 plasminogen deficiency. Plasminogen, human-tvmh received marketing approval on June 4, 2021. This trial was registered at www. CLINICALTRIALS: gov as #NCT02690714.


Assuntos
Plasminogênio , Humanos , Criança , Adulto , Resultado do Tratamento
2.
Pharmaceutics ; 15(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37376068

RESUMO

Acute respiratory distress syndrome (ARDS) is a severe complication of lung injuries, commonly associated with bacterial, fungal and viral infections, including SARS-CoV-2 viral infections. ARDS is strongly correlated with patient mortality and its clinical management is very complex, with no effective treatment presently available. ARDS involves severe respiratory failure, fibrin deposition in both airways and lung parenchyma, with the development of an obstructing hyaline membrane drastically limiting gas exchange. Moreover, hypercoagulation is related to deep lung inflammation, and a pharmacological action toward both aspects is expected to be beneficial. Plasminogen (PLG) is a main component of the fibrinolytic system playing key roles in various inflammation regulatory processes. The inhalation of PLG has been proposed in the form of the off-label administration of an eyedrop solution, namely, a plasminogen-based orphan medicinal product (PLG-OMP), by means of jet nebulisation. Being a protein, PLG is susceptible to partial inactivation under jet nebulisation. The aim of the present work is to demonstrate the efficacy of the mesh nebulisation of PLG-OMP in an in vitro simulation of clinical off-label administration, considering both the enzymatic and immunomodulating activities of PLG. Biopharmaceutical aspects are also investigated to corroborate the feasibility of PLG-OMP administration by inhalation. The nebulisation of the solution was performed using an Aerogen® SoloTM vibrating-mesh nebuliser. Aerosolised PLG showed an optimal in vitro deposition profile, with 90% of the active ingredient impacting the lower portions of a glass impinger. The nebulised PLG remained in its monomeric form, with no alteration of glycoform composition and 94% of enzymatic activity maintenance. Activity loss was observed only when PLG-OMP nebulisation was performed under simulated clinical oxygen administration. In vitro investigations evidenced good penetration of aerosolised PLG through artificial airway mucus, as well as poor permeation across an Air-Liquid Interface model of pulmonary epithelium. The results suggest a good safety profile of inhalable PLG, excluding high systemic absorption but with good mucus diffusion. Most importantly, the aerosolised PLG was capable of reversing the effects of an LPS-activated macrophage RAW 264.7 cell line, demonstrating the immunomodulating activity of PLG in an already induced inflammatory state. All physical, biochemical and biopharmaceutical assessments of mesh aerosolised PLG-OMP provided evidence for its potential off-label administration as a treatment for ARDS patients.

3.
J Transl Med ; 21(1): 301, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143061

RESUMO

BACKGROUND: Pronectins™ are a new class of fibronectin-3-domain 14th-derived (14Fn3) antibody mimics that can be engineered as bispecific T cell engager (BTCE) to redirect immune effector cells against cancer. We describe here the in vitro and in vivo activity of a Pronectin™ AXL-targeted first-in-class bispecific T cell engager (pAXLxCD3ε) against Epithelial Ovarian Cancer (EOC). METHODS: pAXLxCD3ε T-cell mediated cytotoxicity was evaluated by flow cytometry and bioluminescence. pAXLxCD3ε mediated T-cell infiltration, activation and proliferation were assessed by immunofluorescence microscopy and by flow cytometry. Activity of pAXLxCD3ε was also investigated in combination with poly-ADP ribose polymerase inhibitors (PARPi). In vivo antitumor activity of pAXLxCD3ε was evaluated in immunocompromised (NSG) mice bearing intraperitoneal or subcutaneous EOC xenografts and immunologically reconstituted with human peripheral blood mononuclear cells (PBMC). RESULTS: pAXLxCD3ε induced dose-dependent cytotoxicity by activation of T lymphocytes against EOC cells, regardless of their histologic origin. The addition of PARPi to cell cultures enhanced pAXLxCD3ε cytotoxicity. Importantly, in vivo, pAXLxCD3ε was highly effective against EOC xenografts in two different NSG mouse models, by inhibiting the growth of tumor cells in ascites and subcutaneous xenografts. This effect translated into a significantly prolonged survival of treated animals. CONCLUSION: pAXLxCD3ε is an active therapeutics against EOC cells providing a rational for its development as a novel agent in this still incurable disease. The preclinical validation of a first-in-class agent opens the way to the development of a new 14Fn3-based scaffold platform for the generation of innovative immune therapeutics against cancer.


Assuntos
Anticorpos Biespecíficos , Neoplasias Ovarianas , Humanos , Camundongos , Animais , Feminino , Leucócitos Mononucleares , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Linfócitos T , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Complexo CD3
4.
Cancers (Basel) ; 15(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980534

RESUMO

Sarcomas are heterogeneous malignancies with limited therapeutic options and a poor prognosis. We developed an innovative immunotherapeutic agent, a first-in-class Pronectin™-based Bispecific T-Cell Engager (pAXL×CD3ε), for the targeting of AXL, a TAM family tyrosine kinase receptor highly expressed in sarcomas. AXL expression was first analyzed by flow cytometry, qRT-PCR, and Western blot on a panel of sarcoma cell lines. The T-cell-mediated pAXL×CD3ε cytotoxicity against sarcoma cells was investigated by flow cytometry, luminescence assay, and fluorescent microscopy imaging. The activation and degranulation of T cells induced by pAXL×CD3ε were evaluated by flow cytometry. The antitumor activity induced by pAXL×CD3ε in combination with trabectedin was also investigated. In vivo activity studies of pAXL×CD3ε were performed in immunocompromised mice (NSG), engrafted with human sarcoma cells and reconstituted with human peripheral blood mononuclear cells from healthy donors. Most sarcoma cells showed high expression of AXL. pAXL×CD3ε triggered T-lymphocyte activation and induced dose-dependent T-cell-mediated cytotoxicity. The combination of pAXL×CD3ε with trabectedin increased cytotoxicity. pAXL×CD3ε inhibited the in vivo growth of human sarcoma xenografts, increasing the survival of treated mice. Our data demonstrate the antitumor efficacy of pAXL×CD3ε against sarcoma cells, providing a translational framework for the clinical development of pAXL×CD3ε in the treatment of human sarcomas, aggressive and still-incurable malignancies.

5.
Biomedicines ; 10(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36551940

RESUMO

A highly specific AXL-receptor targeted family of non-immunoglobulin, single domain protein binders (Pronectins™) have been isolated from three (3) synthetic libraries that employ the human scaffold of the 14th domain of Fibronectin III (14FN3) and evolutionary CDRs diversity of over 25 billion loop sequences. The three libraries, each containing diversity in two loops, were designed to expand upon a human database of more than 6000 natural scaffold sequences and approximately 3000 human loop sequences. We used a bioinformatic-based approach to maximize "human" amino acid loop diversity and minimize or prevent altogether CDR immunogenicity created by the use of mutagenesis processes to generate diversity. A combination of phage display and yeast display was used to isolate 59 AXL receptor targeted Pronectins with KD ranging between 2 and 100 nM. FACS analysis with tumor cells over-expressing AXL and the use of an AXL knock-out cell line allowed us to identify Pronectin candidates with exquisite specificity for AXL receptor. Based upon several in vitro cell-based tests, we selected the best candidate, AXL54, to further characterize its in vitro cancer cells killing activity. Finally, AXL54 was used to produce the first bi-specific T cell engager protein (AXL54 [Pronectin]-linker-scFV CD3), a "new in class" protein for further testing of its anti-tumor activity in vitro and in vivo.

7.
Mech Ageing Dev ; 203: 111637, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122769

RESUMO

Most chronic illnesses are caused by the biological reaction to an injury, rather than the initial injury or the injurious agent itselves as in neurodegeneration. With respect to this, notable attention is emerging on the therapeutic effects of dietary polyphenols for human health, able to counteract and neutralize oxidative stress and inflammatory processes involved in the etiopathogenesis of major neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. The acquired concept that cellular stress at low doses induces neuroprotective responses against degenerative processes is a frontier area of the neurobiological research focusing on the development of novel preventive and therapeutic interventions for neurodegenerative disorders. Notably, basal levels of prooxidant species are essential to promote adaptive redox cellular responses including vitagenes, tightly correlated to cell survival against age-related diseases. In this paper we discuss the concept of cellular stress response and hormesis and its applications to the field of neuroprotection and the potential therapeutic support provided by olive polyphenols, in particular hydroxytyrosol (HT)-rich aqueous olive pulp extract (Hidrox), as a pivotal activator of Nrf2 pathway and related vitagenes, and inhibitor of Keap1-Nrf2 interaction.Olive polyphenols are considered potential pharmacological modulators of neuroinflammation by upregulation of the Keap1/Nfr2/ARE pathway thus providing a strong rationale for treating neurodegenerative disorders.


Assuntos
Produtos Biológicos , Doenças Neurodegenerativas , Olea , Polifenóis , Produtos Biológicos/uso terapêutico , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Olea/metabolismo , Estresse Oxidativo , Polifenóis/farmacologia , Polifenóis/uso terapêutico
8.
Biomedicines ; 9(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34829912

RESUMO

Fibromyalgia (FM) is a chronic condition characterized by persistent widespread pain that negatively affects the quality of life of patients. The WNT/ß-catenin signaling pathway seems to be involved in central sensitization and different pain states. The objective of this study was to investigate the beneficial effects of a new compound called Hidrox® (HD), containing 40-50% hydroxytyrosol, in counteracting the pain associated with FM. An FM-like model was induced in rats by subcutaneous injections of reserpine (1 mg/kg) for three consecutive days. Later, HD (10 mg/kg) was administered orally to the animals for seven days. Reserpine injections induced WNT/ß-catenin pathway activation, release of pro-inflammatory mediators as well as a significant increase in oxidative stress. Daily treatment with HD was able to modulate the WNT/ß-catenin and Nrf2 pathways and consequently attenuate the behavioral deficits and microglia activation induced by reserpine injection. These results indicate that nutritional consumption of HD can be considered as a new therapeutic approach for human FM.

9.
Mech Ageing Dev ; 199: 111551, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358533

RESUMO

Polyphenols are chemopreventive through the induction of nuclear factor erythroid 2 related factor 2 (Nrf2)-mediated proteins and anti-inflammatory pathways. These pathways, encoding cytoprotective vitagenes, include heat shock proteins, such as heat shock protein 70 (Hsp70) and heme oxygenase-1 (HO-1), as well as glutathione redox system to protect against cancer initiation and progression. Phytochemicals exhibit biphasic dose responses on cancer cells, activating at low dose, signaling pathways resulting in upregulation of vitagenes, as in the case of the Nrf2 pathway upregulated by hydroxytyrosol (HT) or curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Here, the importance of vitagenes in redox stress response and autophagy mechanisms, as well as the potential use of dietary antioxidants in the prevention and treatment of multiple types of cancer are discussed. We also discuss the possible relationship between SARS-CoV-2, inflammation and cancer, exploiting innovative therapeutic approaches with HT-rich aqueous olive pulp extract (Hidrox®), a natural polyphenolic formulation, as well as the rationale of Vitamin D supplementation. Finally, we describe innovative approaches with organoids technology to study human carcinogenesis in preclinical models from basic cancer research to clinical practice, suggesting patient-derived organoids as an innovative tool to test drug toxicity and drive personalized therapy.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Desenvolvimento de Medicamentos , Fator 2 Relacionado a NF-E2/metabolismo , Organoides/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/farmacologia , Vitamina D/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Humanos , Fator 2 Relacionado a NF-E2/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Organoides/metabolismo , Oxirredução , Estresse Oxidativo/genética , Tratamento Farmacológico da COVID-19
10.
Antioxidants (Basel) ; 10(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209690

RESUMO

Interstitial cystitis/painful bladder syndrome (IC/PBS) is a chronic bladder condition characterized by frequent urination, inflammation, oxidative stress, and pain. The aim of the study was to evaluate the anti-inflammatory and antioxidant effects of an oral administration of Hidrox® (10 mg/kg) in the bladder and spinal cord in a rodent model of IC/BPS. The chronic animal model of cystitis was induced by repeated intraperitoneal injections of cyclophosphamide (CYP) for five consecutive days. Treatment with Hidrox® began on the third day of the CYP injection and continued until the 10th day. CYP administration caused macroscopic and histological bladder changes, inflammatory infiltrates, increased mast cell numbers, oxidative stress, decreased expression of the tight endothelial junction (e.g., zonula occludens-1 (ZO-1) and occludin), and bladder pain. Treatment with Hidrox® was able to improve CYP-induced inflammation and oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. It was also able to reduce bladder pain which was aggravated by the activation of neuroinflammation in the central nervous system. In particular, Hidrox® reduced the brain-derived neurotrophic factor (BDNF), as well as the activation of astrocytes and microglia, consequently reducing mechanical allodynia. These results indicate that nutritional consumption of Hidrox® can be considered as a new therapeutic approach for human cystitis, increasing the conceivable potential of a significant improvement in the quality of life associated with a lowering of symptom intensity in patients with IC/BPS.

11.
Antioxidants (Basel) ; 10(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065584

RESUMO

Traumatic brain injuries (TBI) are a serious public-health problem. Furthermore, subsequent TBI events can compromise TBI patients' quality of life. TBI is linked to a number of long- and short-term complications such as cerebral atrophy and risk of developing dementia and Alzheimer's Disease (AD). Following direct TBI damage, oxidative stress and the inflammatory response lead to tissue injury-associated neurodegenerative processes that are characteristic of TBI-induced secondary damage. Hidrox® showed positive effects in preclinical models of toxic oxidative stress and neuroinflammation; thus, the aim of this study was to evaluate the effect of Hidrox® administration on TBI-induced secondary injury and on the propagation of the AD-like neuropathology. Hidrox® treatment reduced histological damage after controlled cortical impact. Form a molecular point of view, hydroxytyrosol is able to preserve the cellular redox balance and protein homeostasis by activating the Nrf2 pathway and increasing the expression of phase II detoxifying enzymes such as HO-1, SOD, Catalase, and GSH, thus counteracting the neurodegenerative damage. Additionally, Hidrox® showed anti-inflammatory effects by reducing the activation of the NFkB pathway and related cytokines overexpression. From a behavioral point of view, Hidrox® treatment ameliorated the cognitive dysfunction and memory impairment induced by TBI. Additionally, Hidrox® was associated with a significant increased number of hippocampal neurons in the CA3 region, which were reduced post-TBI. In particular, Hidrox® decreased AD-like phenotypic markers such as ß-amyloid accumulation and APP and p-Tau overexpression. These findings indicate that Hidrox® could be a valuable treatment for TBI-induced secondary injury and AD-like pathological features.

12.
Antioxidants (Basel) ; 10(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068924

RESUMO

BACKGROUND: Every year, men use cyclophosphamide to treat various cancers and autoimmune diseases. On the one hand, this chemotherapy often has the beneficial effect of regressing the tumor, but on the other hand, it leads to infertility due to excessive oxidative stress and apoptosis in the testes caused by its metabolite, acrolein. METHODS: The objective of this study was to evaluate the beneficial power of a new compound called Hidrox®, containing 40-50% hydroxytyrosol, in counteracting the damage related to fertility induced by cyclophosphamide. The study was conducted using a single intraperitoneal injection of cyclophosphamide at a dose of 200 mg/kg b.w, in distilled water at 10 mL/kg b.w. The treatment was administered via the oral administration of Hidrox® at a dose of 50 mg/kg. RESULTS: Our study confirms that the use of cyclophosphamide causes a series of sperm and histological alterations strongly connected with oxidative stress, lipid peroxidation, and apoptosis. CONCLUSION: Our results demonstrate for the first time that Hidrox® protects testes from CYP-induced alterations by the modulation of physiological antioxidant defenses.

13.
Antioxidants (Basel) ; 10(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064310

RESUMO

Endometriosis is a gynecological and painful condition affecting women of reproductive age. It is characterized by dysfunctional endometrium-like implants outside of the uterine cavity. The purpose of this study was to evaluate the effects of Hidrox®, an aqueous extract of olive pulp containing hydroxytyrosol, on endometriotic lesions associated with pro-oxidative alterations and pain-like behaviors. Endometriosis was induced by intraperitoneal injection of uterine fragments, and Hidrox® was administered daily. At the end of the 14-day treatment, behavioral alterations were assessed and hippocampal tissues were collected. Laparotomy was performed, and the endometrial implants were harvested for histological and biochemical analysis. Hidrox® treatment reduced endometriotic implant area, diameter and volumes. Vehicle-treated rats showed lesional fibrosis, epithelial-mesenchymal transition and fibroblast-myofibroblast transdifferentiation, angiogenesis and pro-oxidative alterations in the peritoneal cavity. Hidrox® treatment reduced the aniline blue-stained area, α-smooth muscle actin (α-sma) and CD34 positive expressions. Moreover, it reduced mast cell recruitment into the lesions, myeloperoxidase activity and lipid peroxidation and increased superoxide dismutase (SOD) activity and glutathione levels in the endometrial explants. In the peritoneal fluid, Hidrox® treatment reduced interleukin (IL)-1ß, IL2, IL6, tumor necrosis factor-α (TNF-α) and vascular endothelial grow factor (VEGF) levels increased by the disease. Hidrox® administration also reduced peripheral and visceral sensibility as shown by the behavioral tests (open field test, hot plate test, elevated plus maze test and acetic-acid-induced abdominal contractions). Animals treated with Hidrox® also showed reduced blood-brain barrier permeability and mast cell infiltration in the hippocampus, as well as astrocyte and microglia activation and brain oxidative status restoring brain-derived neurotrophic factor (BDNF) protein expression and increasing Nuclear factor erythroid 2-related factor 2 (Nfr2) nuclear translocation. In conclusion, Hidrox® displayed potential ameliorative effects on endometriotic implants and related pain-induced behaviors due to its potent antioxidative properties.

14.
Viruses ; 13(2)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540713

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally. Although measures to control SARS-CoV-2, namely, vaccination, medication, and chemical disinfectants are being investigated, there is an increase in the demand for auxiliary antiviral approaches using natural compounds. Here we have focused on hydroxytyrosol (HT)-rich aqueous olive pulp extract (HIDROX®) and evaluated its SARS-CoV-2-inactivating activity in vitro. We showed that the HIDROX solution exhibits time- and concentration-dependent SARS-CoV-2-inactivating activities, and that HIDROX has more potent virucidal activity than pure HT. The evaluation of the mechanism of action suggested that both HIDROX and HT induced structural changes in SARS-CoV-2, which changed the molecular weight of the spike proteins. Even though the spike protein is highly glycosylated, this change was induced regardless of the glycosylation status. In addition, HIDROX or HT treatment disrupted the viral genome. Moreover, the HIDROX-containing cream applied on film showed time- and concentration-dependent SARS-CoV-2-inactivating activities. Thus, the HIDROX-containing cream can be applied topically as an antiviral hand cream. Our findings suggest that HIDROX contributes to improving SARS-CoV-2 control measures.


Assuntos
Antivirais/farmacologia , Olea , Álcool Feniletílico/análogos & derivados , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Administração Tópica , Animais , Antivirais/química , Carboidratos/química , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus/química , Genoma Viral/efeitos dos fármacos , Glicosilação , Testes de Sensibilidade Microbiana , Álcool Feniletílico/administração & dosagem , Álcool Feniletílico/farmacologia , Fosfoproteínas/química , Extratos Vegetais/química , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Creme para a Pele , Glicoproteína da Espícula de Coronavírus/química , Células Vero , Inativação de Vírus/efeitos dos fármacos
15.
Pharmaceuticals (Basel) ; 13(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260813

RESUMO

The SARS-CoV-2 infection is associated with pulmonary coagulopathy, which determines the deposition of fibrin in the air spaces and lung parenchyma. The resulting lung lesions compromise patient pulmonary function and increase mortality, or end in permanent lung damage for those who have recovered from the COVID-19 disease. Therefore, local pulmonary fibrinolysis can be efficacious in degrading pre-existing fibrin clots and reducing the conversion of lung lesions into lasting scars. Plasminogen is considered a key player in fibrinolysis processes, and in view of a bench-to-bedside translation, we focused on the aerosolization of an orphan medicinal product (OMP) for ligneous conjunctivitis: human plasminogen (PLG-OMP) eye drops. As such, the sterile and preservative-free solution guarantees the pharmaceutical quality of GMP production and meets the Ph. Eur. requirements of liquid preparations for nebulization. PLG-OMP aerosolization was evaluated both from technological and stability viewpoints, after being submitted to either jet or ultrasonic nebulization. Jet nebulization resulted in a more efficient delivery of an aerosol suitable for pulmonary deposition. The biochemical investigation highlighted substantial protein integrity maintenance with the percentage of native plasminogen band > 90%, in accordance with the quality specifications of PLG-OMP. In a coherent way, the specific activity of plasminogen is maintained within the range 4.8-5.6 IU/mg (PLG-OMP pre-nebulization: 5.0 IU/mg). This is the first study that focuses on the technological and biochemical aspects of aerosolized plasminogen, which could affect both treatment efficacy and clinical dosage delivery. Increasing evidence for the need of local fibrinolytic therapy could merge with the availability of PLG-OMP as an easy handling solution, readily aerosolizable for a fast translation into an extended clinical efficacy assessment in COVID-19 patients.

16.
Antioxidants (Basel) ; 9(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899274

RESUMO

BACKGROUND: In developed countries, the extension of human life is increasingly accompanied by a progressive increase in neurodegenerative diseases, most of which do not yet have effective therapy but only symptomatic treatments. In recent years, plant polyphenols have aroused considerable interest in the scientific community. The mechanisms currently hypothesized for the pathogenesis of Parkinson's disease (PD) are neuroinflammation, oxidative stress and apoptosis. Hydroxytyrosol (HT), the main component of Hidrox® (HD), has been shown to have some of the highest free radical evacuation and anti-inflammatory activities. Here we wanted to study the role of HD on the neurobiological and behavioral alterations induced by rotenone. METHODS: A study was conducted in which mice received HD (10 mg/kg, i.p.) concomitantly with rotenone (5 mg/kg, o.s.) for 28 days. RESULTS: Locomotor activity, catalepsy, histological damage and several characteristic markers of the PD, such as the dopamine transporter (DAT) content, tyrosine hydroxylase (TH) and accumulation of α-synuclein, have been evaluated. Moreover, we observed the effects of HD on oxidative stress, neuroinflammation, apoptosis and inflammasomes. Taken together, the results obtained highlight HD's ability to reduce the loss of dopaminergic neurons and the damage associated with it by counteracting the three main mechanisms of PD pathogenesis. CONCLUSION: HD is subject to fewer regulations than traditional drugs to improve patients' brain health and could represent a promising nutraceutical choice to prevent PD.

17.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486023

RESUMO

Parkinson's disease (PD) is the second most prevalent late-age onset neurodegenerative disorder, affecting 1% of the population after the age of about 60 years old and 4% of those over 80 years old, causing motor impairments and cognitive dysfunction. Increasing evidence indicates that Mediterranean diet (MD) exerts beneficial effects in maintaining health, especially during ageing and by the prevention of neurodegenerative disorders. In this regard, olive oil and its biophenolic constituents like hydroxytyrosol (HT) have received growing attention in the past years. Thus, in the current study we test the health-promoting effects of two hydroxytyrosol preparations, pure HT and Hidrox® (HD), which is hydroxytyrosol in its "natural" environment, in the established invertebrate model organism Caenorhabditis elegans. HD exposure led to much stronger beneficial locomotion effects in wild type worms compared to HT in the same concentration. Consistent to this finding, in OW13 worms, a PD-model characterized by α-synuclein expression in muscles, HD exhibited a significant higher effect on α-synuclein accumulation and swim performance than HT, an effect partly confirmed also in swim assays with the UA44 strain, which features α-synuclein expression in DA-neurons. Interestingly, beneficial effects of HD and HT treatment with similar strength were detected in the lifespan and autofluorescence of wild-type nematodes, in the neuronal health of UA44 worms as well as in the locomotion of rotenone-induced PD-model. Thus, the hypothesis that HD features higher healthspan-promoting abilities than HT was at least partly confirmed. Our study demonstrates that HD polyphenolic extract treatment has the potential to partly prevent or even treat ageing-related neurodegenerative diseases and ageing itself. Future investigations including mammalian models and human clinical trials are needed to uncover the full potential of these olive compounds.


Assuntos
Caenorhabditis elegans/fisiologia , Olea/química , Doença de Parkinson/dietoterapia , Doença de Parkinson/fisiopatologia , Polifenóis/farmacologia , Envelhecimento , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Dieta Mediterrânea , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Humanos , Longevidade , Microscopia de Fluorescência , Azeite de Oliva/química , Rotenona/toxicidade , alfa-Sinucleína/metabolismo
18.
J Neurosci Res ; 95(7): 1360-1372, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27862176

RESUMO

Alzheimer disease (AD) is a progressive neurodegenerative disorder leading to cognitive decline, neuropsychiatric symptoms, disability, caregiver burden, and premature death. It represents the most prevalent cause of dementia, and its incidence rates exponentially increase with increasing age. The number of Americans living with AD is rapidly increasing. An estimated 5.4 million Americans of all ages have AD in 2016. One in nine people aged 65 and older has AD, and by midcentury, someone in the United States will develop the disease every 33 sec. It is now accepted that neuroinflammation is a common feature of neurological disease. Inflammasomes, which are a multiprotein complex part of the innate immune system, induce inflammation in response to various stimuli, such as pathogens and stress. Inflammasomes activate proinflammatory caspases, such as caspase-1, leading to the activation of the proinflammatory cytokines interleukin (IL)-1b, IL-18, and IL-33, which promote neuroinflammation and brain pathologies. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing-3 (NLRP3) inflammasome is the best characterized in neurodegenerative diseases, in particular AD. Recent research suggests that NLRP3 could possibly be used in targeted therapies to alleviate neuroinflammation. Modulation of endogenous cellular defense mechanisms may be an innovative approach to therapeutic intervention in AD and other disorders associated with neuroinflammation and neurodegeneration. Herein, we introduce the hormetic dose-response concept and present possible mechanisms and applications to neuroprotection. We summarize the mechanisms involved in activation of the NLRP3 inflammasome and its role in neuroinflammation. We also address and propose the potential therapeutic utility of the nutritional antioxidants sulforaphane and hydroxytyrosol against particular signs and symptoms of AD. © 2016 Wiley Periodicals, Inc.


Assuntos
Doença de Alzheimer/metabolismo , Antioxidantes/metabolismo , Hormese/fisiologia , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Doença de Alzheimer/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores
19.
Blood Coagul Fibrinolysis ; 28(6): 425-430, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27898515

RESUMO

: The objective of this study was to assess the cost-effectiveness of pharmacokinetic-driven prophylaxis in severe haemophilia A patients. A microsimulation model was developed to evaluate the cost-effectiveness of pharmacokinetic-driven prophylaxis vs. standard prophylaxis and estimate cost, annual joint bleed rate (AJBR), and incremental cost-effectiveness ratio over a 1-year time horizon for a hypothetical population of 10 000 severe haemophilia A patients. A dose of 30 IU/kg per 48 h was assumed for standard prophylaxis. Pharmacokinetic prophylaxis was individually adjusted to maintain trough levels at least 1 and 5 IU/dl or less. AJBR was estimated on the relationship between factor VIII (FVIII) levels and bleeding rate reported in the literature. Sensitivity analyses were performed to assess the stability of the model and the reliability of results. The FVIII dose was reduced in the 27.8% of patients with a trough level more than 5 IU/dl on standard prophylaxis, with a negligible impact on AJBR (+0.1 bleed/year). The FVIII dose was increased in the 10.6% of patients with trough levels less than 1 IU/dl on standard prophylaxis, with a significant reduction of AJBR (-1.9 bleeds/year). On average, overall, pharmacokinetic-driven prophylaxis was shown to decrease the AJBR from 1.012 to 0.845 with a slight reduction of the infusion dose of 0.36 IU/kg, with total saving of 5 197&OV0556; per patient-year. Pharmacokinetic-driven prophylaxis was preferable (i.e. more effective and less costly) compared with standard prophylaxis, with savings of 31 205&OV0556; per bleed avoided. Pharmacokinetic-driven prophylaxis, accounting for patients' individual pharmacokinetic variability, appears to be a promising strategy to improve outcomes with efficient use of available resources in severe haemophilia A patients.


Assuntos
Análise Custo-Benefício , Hemofilia A/economia , Farmacocinética , Pré-Medicação/métodos , Fator VIII/administração & dosagem , Fator VIII/economia , Hemartrose/economia , Hemartrose/prevenção & controle , Hemofilia A/tratamento farmacológico , Humanos , Pré-Medicação/economia
20.
Blood Adv ; 1(26): 2637-2642, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29296916

RESUMO

Anti-inhibitor coagulant complex (AICC), an activated prothrombin complex concentrate, has been available for the treatment of patients with inhibitors since 1977, and thromboembolic events (TEEs) have been reported after infusion of AICC in patients with congenital or acquired hemophilia. With the aim of estimating the TEE incidence rate (IR) related to AICC exposure in these patients, a systematic review of the literature was carried out in Medline, according to PRISMA guidelines, from inception date to March 2017. The IR of TEEs was estimated through a meta-analytic approach by using a generalized linear mixed model based on a Poisson distribution. Thirty-nine studies were included (1980-2016). Overall, 46 TEEs were reported; of these, 13 were reported as disseminated intravascular coagulations, 11 as myocardial infarctions, and 3 as thrombotic cerebrovascular accidents. The pooled TEE IR was 2.87 (95% confidence interval [CI], 0.32-25.40) per 100 000 AICC infusions (5.42 in retrospective studies [95% CI, 0.92-31.82]; 1.09 in prospective studies [95% CI, 0.01-238.77]). The TEE rate was 5.09 (95% CI, 0.01-1795.60) per 100 000 AICC infusions administered on demand, whereas no TEEs were reported with prophylaxis. Interestingly, the estimated IR in patients with congenital hemophilia was <0.01 per 100 000 infusions. These findings provide robust evidence of safety of AICC over almost 40 years of published studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...