Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 100(1-3): 271-83, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12835028

RESUMO

A respirometry technique can be applied as an effective method to determine the net maximum specific growth rate of autotrophic biomass under both normal conditions and when inhibition occurs. The net maximum specific growth rate of uninhibited autotrophic biomass, expressed as (mu(A)-b(A)), is approximately 0.8 per day [Proceeding of the International Congress on CHISA, Prague, 2002, p. 1]. Several heavy metals and organic compounds have inhibitory effects. Copper (Cu(2+)) has stronger inhibitory effects than zinc (Zn(2+)), and inhibits the nitrification process by 50% at 0.08 mg/l [(mu(A)-b(A)) = 0.4 per day], while the same concentration of Zn(2+) establishes 12% inhibition only [(mu(A)-b(A)) = 0.75 per day]. Inhibition with Cu(2+) starts at concentrations above 0.05 mg/l, while this is above 0.3mg/l for Zn(2+). The inhibition of the nitrification process is complete at 1.2mg/l for both Cu(2+) and Zn(2+). Among the selected organic compounds tested n the experiments, the degree of inhibition decreases as follow: chlorobenzene>trichloroethylene (TCE)>phenol>ethylbenzene. Chlorobenzene already inhibits the autotrophic biomass at 0.25 mg/l. The nitrification process is totally inhibited by adding 0.75 mg/l of chlorobenzene. TCE has a less inhibitory effect on the nitrification process and 50% inhibition is noticed at 0.75 mg/l TCE. The nitrification process is totally inhibited at 1mg/l TCE. Phenol inhibits the nitrification for 50% at 3 mg/l. The inhibitory effect of phenol is almost constant in the range 4-10 mg/l and complete inhibition is reached at 50 mg/l. The inhibitory effect of ethylbenzene is 50% at 8 mg/l and the autotrophic biomass is totally inhibited at 50 mg/l. Experimental findings are compared with literature data, which generally and significantly overestimate the inhibition threshold concentrations.


Assuntos
Derivados de Benzeno/farmacologia , Metais Pesados/efeitos adversos , Fenol/farmacologia , Esgotos/microbiologia , Solventes/farmacologia , Tricloroetileno/farmacologia , Bactérias , Biomassa , Dinâmica Populacional , Esgotos/química
2.
J Hazard Mater ; 97(1-3): 295-314, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12573845

RESUMO

The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K(+)/Na(+) and Ca(2+)/Mg(2+)) on the sludge dewaterability, only the use of Ca(2+) appears to offer the best solution. The lesser effects of K(+), Na(+) and Mg(2+) confirm previous experimental findings. As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH)(2) is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100 degrees C; at a pH approximately 10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34s for the initial untreated sample to approximately 22s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46%.Finally, the mass and energy balances of a wastewater treatment plant with/without advanced sludge treatment (AST) are compared. The data clearly illustrate the benefits of using an alkaline AST-step in the system.


Assuntos
Eliminação de Resíduos , Eliminação de Resíduos Líquidos , Água/química , Concentração de Íons de Hidrogênio , Hidrólise , Incineração , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...