Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Clin Pharmacol ; 90(3): 812-818, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37953463

RESUMO

AIMS: Lacosamide is a third-generation antiepileptic drug used as adjunctive therapy for partial seizures. Since its approval in 2008 very few cases of lacosamide overdose have been described in literature. The aim of our study was to evaluate clinical characteristics of acute lacosamide poisoning. METHODS: A retrospective observational study was performed including all cases of acute lacosamide poisoning referred to Pavia Poison Control Centre from January 2012 to December 2021. For each patient age, sex, ingested dose, coingestants, clinical manifestations, treatment and outcome were collected. RESULTS: A total of 31 subjects (median age 39 years, [interquartile range: 26.5-46.5]; females 22/31) were included. The median lacosamide ingested dose was 1500 mg [650-2800]. In 35.5% of cases lacosamide was the single ingested substance, while in 64.5% coingestants were also present. Coingestants varied from a minimum of 1 to a maximum of 3, with the more common being benzodiazepines and valproic acid. Clinical manifestations were present in 87% patients the most common were: vomiting (29%); seizures (29%), coma (25.8%), drowsiness (25.8%), confusion (12.9%), agitation (12.9%), tachycardia (12.9%), tremors (9.7%), bradycardia (9.7%), headache (6.5%) and hypertension (3.2%). The median lacosamide ingested dose was significantly higher in patients that experienced coma compared to patient who did not (2800 vs. 800 mg; P = .0082). Orotracheal intubation was necessary in 32.3% of patients. All patients fully recovered. CONCLUSION: Lacosamide acute overdose may lead to a severe clinical picture. Dentral nervous system symptoms predominated, particularly seizures and coma occurred in a high percentage of cases.


Assuntos
Overdose de Drogas , Centros de Controle de Intoxicações , Adulto , Feminino , Humanos , Anticonvulsivantes/uso terapêutico , Coma/induzido quimicamente , Coma/tratamento farmacológico , Overdose de Drogas/terapia , Overdose de Drogas/tratamento farmacológico , Lacosamida/uso terapêutico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Estudos Retrospectivos
2.
Pharmaceutics ; 15(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37631244

RESUMO

The objective of this study was to validate a novel assay using the volumetric absorptive microsampling (VAMS) technique combined with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for the determination of the antiseizure medication perampanel in saliva and its clinical applicability in patients with epilepsy. VAMS tips were loaded with 30 µL of saliva and dried for 60 min. Analytes were extracted with methanol. The supernatant was evaporated under a gentle stream of nitrogen and reconstituted with 60 µL of methanol. Separation and quantification were achieved on a monolithic column connected to a mass spectrometer. Calibration curves were linear between 0.5 and 300 ng/mL. Intra- and inter-day accuracy was within 85.6-103.2% and intra-day and inter-day precision did not exceed 12.1%. Perampanel was stable in samples collected by VAMS and stored under different storage conditions. The VAMS-LC-MS/MS method was validated according to internationally accepted criteria and tested in patients with epilepsy who were receiving a combination of perampanel and other antiseizure medications. The method showed adequate bioanalytical performances, holding great potential as an alternative strategy to support domiciliary TDM in patients with epilepsy treated with perampanel according to the simplicity of sample collection.

3.
Cells ; 11(21)2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36359764

RESUMO

BACKGROUND: Intestinal ischemia and reperfusion (IRI) injury induces acute and long-lasting damage to the neuromuscular compartment and dysmotility. This study aims to evaluate the pathogenetic role of hyaluronan (HA), a glycosaminoglycan component of the extracellular matrix, as a modulator of the enteric neuronal and immune function and of the colonic microbiota during in vivo IRI in the rat small intestine. METHODS: mesenteric ischemia was induced in anesthetized adult male rats for 60 min, followed by 24 h reperfusion. Injured, sham-operated and non-injured animals were treated with the HA synthesis inhibitor, 4-methylumbelliferone (4-MU 25 mg/kg). Fecal microbiota composition was evaluated by Next Generation Sequencing. Neutrophil infiltration, HA homeostasis and toll like receptor (TLR2 and TLR4) expression in the small intestine were evaluated by immunohistochemical and biomolecular approaches (qRT-PCR and Western blotting). Neuromuscular responses were studied in vitro, in the absence and presence of the selective TLR2/4 inhibitor, Sparstolonin B (SsnB 10, 30 µM). RESULTS: 4-MU significantly reduced IRI-induced enhancement of potentially harmful Escherichia and Enterococcus bacteria. After IRI, HA levels, neutrophil infiltration, and TLR2 and TLR4 expression were significantly enhanced in the muscularis propria, and were significantly reduced to baseline levels by 4-MU. In the injured, but not in the non-injured and sham-operated groups, SsnB reduced both electrical field-stimulated (EFS, 0.1-40 Hz) contractions and EFS-induced (10 Hz) non-cholinergic non-adrenergic relaxations. CONCLUSIONS: enhanced HA levels after intestinal IRI favors harmful bacteria overgrowth, increases neutrophil infiltration and promotes the upregulation of bacterial target receptors, TLR2 and TLR4, in the muscularis propria, inducing a pro-inflammatory state. TLR2 and TLR4 activation may, however, underlay a provisional benefit on excitatory and inhibitory neuronal pathways underlying peristalsis.


Assuntos
Microbiota , Traumatismo por Reperfusão , Animais , Masculino , Ratos , Ácido Hialurônico/metabolismo , Imunidade , Intestino Delgado/metabolismo , Traumatismo por Reperfusão/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
Front Pharmacol ; 13: 915004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814197

RESUMO

Cannabidiol is a novel antiseizure medication approved in Europe and the US for the treatment of seizures associated with Lennox-Gastaut syndrome, Dravet syndrome and tuberous sclerosis complex. We describe in this article a new and simple liquid chromatography-mass spectrometry method (LC-MS/MS) for the determination of cannabidiol and its active metabolite 7-hydroxy-cannabidiol in microvolumes of serum and saliva (50 µl), to be used as a tool for therapeutic drug monitoring (TDM) and pharmacokinetic studies. After on-line solid phase extraction cannabidiol, 7-hydroxy-cannabidiol and the internal standard cannabidiol-d3 are separated on a monolithic C18 column under gradient conditions. Calibration curves are linear within the validated concentration range (10-1,000 ng/ml for cannabidiol and 5-500 ng/ml for 7-hydroxy-cannabidiol). The method is accurate (intraday and interday accuracy within 94-112% for cannabidiol, 91-109% for 7-hydroxy-cannabidiol), precise (intraday and interday precision <11.6% for cannabidiol and <11.7% for 7- hydroxy-cannabidiol) and sensitive, with a LOQ of 2.5 ng/ml for cannabidiol and 5 ng/ml for 7-hydroxy-cannabidiol. The stability of the analytes was confirmed under different storage conditions. Extraction recoveries were in the range of 81-129% for cannabidiol and 100-113% for 7-hydroxy-cannabidiol. The applicability of the method to TDM was demonstrated by analysis of human serum and saliva samples obtained from patients with epilepsy treated with cannabidiol.

5.
Arch Med Sci ; 17(4): 1087-1092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336036

RESUMO

INTRODUCTION: The aim of the study was to assess the effects of chronic inflammation on incretin levels, inflammatory markers, and enteric neuronal function measured in isolated preparations of smooth muscle of rat. MATERIAL AND METHODS: We induced experimental colitis using 2,4-dinitrobenzenesulfonic acid (DNBS) in 17 Albino male Sprague-Dawley rats, while 16 rats were used as a control. They were housed in temperature-controlled rooms in a 12-h light/dark cycle at 22-24°C and 50 to 60% humidity. We evaluated in both inflamed and healthy rats: fasting plasma glucose concentration, fasting plasma insulin, myeloperoxidase, active glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), and GLP-2 levels, adiponectin, and C-reactive protein (CRP). We also evaluated colonic longitudinal smooth muscle contractile activity. RESULTS: Intrarectal administration of DNBS reduced body weight gain in inflamed rats. We recorded higher levels of fasting plasma glucose, and insulin in inflamed rats. We observed higher levels of myeloperoxidase and CRP, and lower levels of ADN in inflamed rats. We recorded higher levels of GIP, GLP-1, and GLP-2 in inflamed rats compared to the healthy ones. Regarding functional response of colon intestinal smooth muscle after electrical stimulation, we recorded a lower functional response of colon intestinal smooth muscle after electrical stimulation in inflamed rats. CONCLUSIONS: We can conclude that chronic inflammation leads to an increase of incretin levels and to a decrease of functional response of colon intestinal smooth muscle after electrical stimulation.

6.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562721

RESUMO

The complex bidirectional communication system existing between the gastrointestinal tract and the brain initially termed the "gut-brain axis" and renamed the "microbiota-gut-brain axis", considering the pivotal role of gut microbiota in sustaining local and systemic homeostasis, has a fundamental role in the pathogenesis of Inflammatory Bowel Disease (IBD). The integration of signals deriving from the host neuronal, immune, and endocrine systems with signals deriving from the microbiota may influence the development of the local inflammatory injury and impacts also more distal brain regions, underlying the psychophysiological vulnerability of IBD patients. Mood disorders and increased response to stress are frequently associated with IBD and may affect the disease recurrence and severity, thus requiring an appropriate therapeutic approach in addition to conventional anti-inflammatory treatments. This review highlights the more recent evidence suggesting that alterations of the microbiota-gut-brain bidirectional communication axis may concur to IBD pathogenesis and sustain the development of both local and CNS symptoms. The participation of the main microbial-derived metabolites, also defined as "postbiotics", such as bile acids, short-chain fatty acids, and tryptophan metabolites in the development of IBD-associated gut and brain dysfunction will be discussed. The last section covers a critical evaluation of the main clinical evidence pointing to the microbiome-based therapeutic approaches for the treatment of IBD-related gastrointestinal and neuropsychiatric symptoms.


Assuntos
Bactérias/química , Encéfalo/metabolismo , Trato Gastrointestinal/microbiologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Bactérias/imunologia , Ácidos e Sais Biliares/metabolismo , Disbiose , Ácidos Graxos Voláteis/metabolismo , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/psicologia , Índice de Gravidade de Doença , Triptofano/metabolismo
7.
Cells ; 11(1)2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35011688

RESUMO

The commensal microbiota plays a fundamental role in maintaining host gut homeostasis by controlling several metabolic, neuronal and immune functions. Conversely, changes in the gut microenvironment may alter the saprophytic microbial community and function, hampering the positive relationship with the host. In this bidirectional interplay between the gut microbiota and the host, hyaluronan (HA), an unbranched glycosaminoglycan component of the extracellular matrix, has a multifaceted role. HA is fundamental for bacterial metabolism and influences bacterial adhesiveness to the mucosal layer and diffusion across the epithelial barrier. In the host, HA may be produced and distributed in different cellular components within the gut microenvironment, playing a role in the modulation of immune and neuronal responses. This review covers the more recent studies highlighting the relevance of HA as a putative modulator of the communication between luminal bacteria and the host gut neuro-immune axis both in health and disease conditions, such as inflammatory bowel disease and ischemia/reperfusion injury.


Assuntos
Microbioma Gastrointestinal , Ácido Hialurônico/metabolismo , Neuroimunomodulação , Animais , Matriz Extracelular/metabolismo , Homeostase , Humanos , Intestinos/patologia
8.
Sci Rep ; 10(1): 11521, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661417

RESUMO

Intestinal ischemia/reperfusion (I/R) injury has severe consequences on myenteric neurons, which can be irreversibly compromised resulting in slowing of transit and hindered food digestion. Myenteric neurons synthesize hyaluronan (HA) to form a well-structured perineuronal net, which undergoes derangement when myenteric ganglia homeostasis is perturbed, i.e. during inflammation. In this study we evaluated HA involvement in rat small intestine myenteric plexus after in vivo I/R injury induced by clamping a branch of the superior mesenteric artery for 60 min, followed by 24 h of reperfusion. In some experiments, 4-methylumbelliferone (4-MU, 25 mg/kg), a HA synthesis inhibitor, was intraperitoneally administered to normal (CTR), sham-operated (SH) and I/R animals for 24 h. In longitudinal muscle myenteric plexus (LMMP) whole-mount preparations, HA binding protein staining as well as HA levels were significantly higher in the I/R group, and were reduced after 4-MU treatment. HA synthase 1 and 2 (HAS1 and HAS2) labelled myenteric neurons and mRNA levels in LMMPs increased in the I/R group with respect to CTR, and were reduced by 4-MU. The efficiency of the gastrointestinal transit was significantly reduced in I/R and 4-MU-treated I/R groups with respect to CTR and SH groups. In the 4-MU-treated I/R group gastric emptying was reduced with respect to the CTR, SH and I/R groups. Carbachol (CCh) and electrical field (EFS, 0.1-40 Hz) stimulated contractions and EFS-induced (10 Hz) NANC relaxations were reduced in the I/R group with respect to both CTR and SH groups. After I/R, 4-MU treatment increased EFS contractions towards control values, but did not affect CCh-induced contractions. NANC on-relaxations after I/R were not influenced by 4-MU treatment. Main alterations in the neurochemical coding of both excitatory (tachykinergic) and inhibitory pathways (iNOS, VIPergic) were also observed after I/R, and were influenced by 4-MU administration. Overall, our data suggest that, after an intestinal I/R damage, changes of HA homeostasis in specific myenteric neuron populations may influence the efficiency of the gastrointestinal transit. We cannot exclude that modulation of HA synthesis in these conditions may ameliorate derangement of the enteric motor function preventing, at least in part, the development of dysmotility.


Assuntos
Trânsito Gastrointestinal/fisiologia , Ácido Hialurônico/metabolismo , Intestino Delgado/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Modelos Animais de Doenças , Gânglios/metabolismo , Motilidade Gastrointestinal/genética , Motilidade Gastrointestinal/fisiologia , Trânsito Gastrointestinal/genética , Humanos , Hialuronan Sintases/genética , Íleo/metabolismo , Íleo/fisiologia , Intestino Delgado/patologia , Plexo Mientérico/metabolismo , Fenômenos Fisiológicos do Sistema Nervoso , Neurônios/metabolismo , Neurônios/patologia , Ratos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
9.
PeerJ ; 8: e8442, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32095330

RESUMO

BACKGROUND: Inflammatory bowel diseases are associated with remodeling of neuronal circuitries within the enteric nervous system, occurring also at sites distant from the acute site of inflammation and underlying disturbed intestinal functions. Homeoproteins orthodenticle OTX1 and OTX2 are neuronal transcription factors participating to adaptation during inflammation and underlying tumor growth both in the central nervous system and in the periphery. In this study, we evaluated OTX1 and OTX2 expression in the rat small intestine and distal colon myenteric plexus after intrarectal dinitro-benzene sulfonic (DNBS) acid-induced colitis. METHODS: OTX1 and OTX2 distribution was immunohistochemically investigated in longitudinal muscle myenteric plexus (LMMP)-whole mount preparations. mRNAs and protein levels of both OTX1 and OTX2 were evaluated by qRT-PCR and Western blotting in LMMPs. RESULTS: DNBS-treatment induced major gross morphology and histological alterations in the distal colon, while the number of myenteric neurons was significantly reduced both in the small intestine and colon. mRNA levels of the inflammatory markers, TNFα, pro-IL1ß, IL6, HIF1α and VEGFα and myeloperoxidase activity raised in both regions. In both small intestine and colon, an anti-OTX1 antibody labeled a small percentage of myenteric neurons, and prevalently enteric glial cells, as evidenced by co-staining with the glial marker S100ß. OTX2 immunoreactivity was present only in myenteric neurons and was highly co-localized with neuronal nitric oxide synthase. Both in the small intestine and distal colon, the number of OTX1- and OTX2-immunoreactive myenteric neurons significantly increased after DNBS treatment. In these conditions, OTX1 immunostaining was highly superimposable with inducible nitric oxide synthase in both regions. OTX1 and OTX2 mRNA and protein levels significantly enhanced in LMMP preparations of both regions after DNBS treatment. CONCLUSIONS: These data suggest that colitis up-regulates OTX1 and OTX2 in myenteric plexus both on site and distantly from the injury, potentially participating to inflammatory-related myenteric ganglia remodeling processes involving nitrergic transmission.

10.
Ther Drug Monit ; 42(2): 309-314, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31365481

RESUMO

BACKGROUND: Although therapeutic drug monitoring of antiepileptic drugs is typically based on the analysis of plasma samples, alternative matrices, such as dried plasma spots (DPSs), may offer specific advantages. The aims of this work were to (1) develop and validate a bioanalytical method for the quantitative determination of the second-generation antiepileptic drug perampanel in DPSs; (2) assess short- and long-term stability of perampanel in DPSs; and (3) test the clinical applicability of the developed method. METHODS: Two hundred microliters of plasma were dispensed on a glass paper filter and dried. Glass paper filter discs were then inserted into clean tubes. After addition of the internal standard (ie, promethazine), the analytes were extracted with 5-mL methanol, dried at room temperature (23 ± 2°C), and reconstituted. Separation and quantification were achieved on 2 serial reverse-phase monolithic columns connected to an UV detector (λ = 320 nm). RESULTS: Calibration curves were linear in the validated concentration range (25-1000 ng/mL). Intraday and interday accuracy were in the range of 99.2%-111.4%, whereas intraday and interday precision (coefficient of variation) ranged from 2.8% to 8.6%. The lowest limit of quantitation was 25 ng/mL. The stability of the analyte in DPSs was assessed and confirmed under different storage conditions. Perampanel concentrations estimated in DPS samples from patients receiving therapeutic doses were equivalent to those measured in plasma samples. CONCLUSIONS: This simple method enables the quantitation of perampanel in DPSs with adequate accuracy, precision, specificity, and sensitivity. The short- and long-term stabilities of perampanel in DPSs are highly beneficial for sample shipment or storage at ambient temperature. Moreover, DPSs decreases the costs associated with storage and transportation compared with conventional wet samples.


Assuntos
Anticonvulsivantes/sangue , Teste em Amostras de Sangue Seco/métodos , Monitoramento de Medicamentos/métodos , Piridonas/sangue , Anticonvulsivantes/farmacocinética , Cromatografia Líquida de Alta Pressão , Teste em Amostras de Sangue Seco/normas , Monitoramento de Medicamentos/normas , Humanos , Nitrilas , Piridonas/farmacocinética , Reprodutibilidade dos Testes
11.
Toxins (Basel) ; 11(8)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370176

RESUMO

Visceral pain, of which the pathogenic basis is currently largely unknown, is a hallmark symptom of both functional disorders, such as irritable bowel syndrome, and inflammatory bowel disease. Intrinsic sensory neurons in the enteric nervous system and afferent sensory neurons of the dorsal root ganglia, connecting with the central nervous system, represent the primary neuronal pathways transducing gut visceral pain. Current pharmacological therapies have several limitations, owing to their partial efficacy and the generation of severe adverse effects. Numerous cellular targets of visceral nociception have been recognized, including, among others, channels (i.e., voltage-gated sodium channels, VGSCs, voltage-gated calcium channels, VGCCs, Transient Receptor Potential, TRP, and Acid-sensing ion channels, ASICs) and neurotransmitter pathways (i.e., GABAergic pathways), which represent attractive targets for the discovery of novel drugs. Natural biologically active compounds, such as marine toxins, able to bind with high affinity and selectivity to different visceral pain molecular mediators, may represent a useful tool (1) to improve our knowledge of the physiological and pathological relevance of each nociceptive target, and (2) to discover therapeutically valuable molecules. In this review we report the most recent literature describing the effects of marine toxin on gastrointestinal visceral pain pathways and the possible clinical implications in the treatment of chronic pain associated with gut diseases.


Assuntos
Gastroenteropatias/tratamento farmacológico , Toxinas Marinhas/uso terapêutico , Dor Visceral/tratamento farmacológico , Animais , Gastroenteropatias/fisiopatologia , Humanos , Nociceptividade , Dor Visceral/fisiopatologia
12.
Int J Mol Sci ; 20(6)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934533

RESUMO

A complex bidirectional communication system exists between the gastrointestinal tract and the brain. Initially termed the "gut-brain axis" it is now renamed the "microbiota-gut-brain axis" considering the pivotal role of gut microbiota in maintaining local and systemic homeostasis. Different cellular and molecular pathways act along this axis and strong attention is paid to neuroactive molecules (neurotransmitters, i.e., noradrenaline, dopamine, serotonin, gamma aminobutyric acid and glutamate and metabolites, i.e., tryptophan metabolites), sustaining a possible interkingdom communication system between eukaryota and prokaryota. This review provides a description of the most up-to-date evidence on glutamate as a neurotransmitter/neuromodulator in this bidirectional communication axis. Modulation of glutamatergic receptor activity along the microbiota-gut-brain axis may influence gut (i.e., taste, visceral sensitivity and motility) and brain functions (stress response, mood and behavior) and alterations of glutamatergic transmission may participate to the pathogenesis of local and brain disorders. In this latter context, we will focus on two major gut disorders, such as irritable bowel syndrome and inflammatory bowel disease, both characterized by psychiatric co-morbidity. Research in this area opens the possibility to target glutamatergic neurotransmission, either pharmacologically or by the use of probiotics producing neuroactive molecules, as a therapeutic approach for the treatment of gastrointestinal and related psychiatric disorders.


Assuntos
Encéfalo/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Ácido Glutâmico/metabolismo , Transdução de Sinais , Animais , Humanos , Neurotransmissores/metabolismo
13.
PLoS One ; 14(2): e0212856, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794676

RESUMO

Antibiotic use during adolescence may result in dysbiosis-induced neuronal vulnerability both in the enteric nervous system (ENS) and central nervous system (CNS) contributing to the onset of chronic gastrointestinal disorders, such as irritable bowel syndrome (IBS), showing significant psychiatric comorbidity. Intestinal microbiota alterations during adolescence influence the expression of molecular factors involved in neuronal development in both the ENS and CNS. In this study, we have evaluated the expression of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase B (TrkB) in juvenile mice ENS and CNS, after a 2-week antibiotic (ABX) treatment. In both mucosa and mucosa-deprived whole-wall small intestine segments of ABX-treated animals, BDNF and TrKB mRNA and protein levels significantly increased. In longitudinal muscle-myenteric plexus preparations of ABX-treated mice the percentage of myenteric neurons staining for BDNF and TrkB was significantly higher than in controls. After ABX treatment, a consistent population of BDNF- and TrkB-immunoreactive neurons costained with SP and CGRP, suggesting up-regulation of BDNF signaling in both motor and sensory myenteric neurons. BDNF and TrkB protein levels were downregulated in the hippocampus and remained unchanged in the prefrontal cortex of ABX-treated animals. Immunostaining for BDNF and TrkB decreased in the hippocampus CA3 and dentate gyrus subregions, respectively, and remained unchanged in the prefrontal cortex. These data suggest that dysbiosis differentially influences the expression of BDNF-TrkB in the juvenile mice ENS and CNS. Such changes may potentially contribute later to the development of functional gut disorders, such as IBS, showing psychiatric comorbidity.


Assuntos
Antibacterianos/efeitos adversos , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Encéfalo/metabolismo , Disbiose/metabolismo , Sistema Nervoso Entérico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas de Membrana/biossíntese , Proteínas Tirosina Quinases/biossíntese , Animais , Antibacterianos/farmacologia , Encéfalo/patologia , Disbiose/induzido quimicamente , Disbiose/patologia , Sistema Nervoso Entérico/patologia , Síndrome do Intestino Irritável/induzido quimicamente , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/patologia , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais/efeitos dos fármacos
14.
PLoS One ; 13(8): e0201760, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30075006

RESUMO

We evaluated the chemical coding of the myenteric plexus in the proximal and distal intestine of gilthead sea bream (Sparus aurata), which represents one of the most farmed fish in the Mediterranean area. The presence of nitric oxide (NO), acetylcholine (ACh), serotonin (5-HT), calcitonin-gene-related peptide (CGRP), substance P (SP) and vasoactive intestinal peptide (VIP) containing neurons, was investigated in intestinal whole mount preparations of the longitudinal muscle with attached the myenteric plexus (LMMP) by means of immunohistochemical fluorescence staining. The main excitatory and inhibitory neurochemicals identified in intestinal smooth muscle were ACh, SP, 5HT, and NO, VIP, CGRP. Some neurons displayed morphological features of ascending and descending interneurons and of putative sensory neurons. The expression of these pathways in the two intestinal regions is largely superimposable, although some differences emerged, which may be relevant to the morphological properties of each region. The most important variances are the higher neuronal density and soma size in the proximal intestine, which may depend on the volume of the target tissue. Since in the fish gut the submucosal plexus is less developed, myenteric neurons substantially innervate also the submucosal and epithelial layers, which display a major thickness and surface in the proximal intestine. In addition, myenteric neurons containing ACh and SP, which mainly represent excitatory motor neurons and interneurons innervating the smooth muscle were more numerous in the distal intestine, possibly to sustain motility in the thicker smooth muscle coat. Overall, this study expands our knowledge of the intrinsic innervation that regulates intestinal secretion, absorption and motility in gilthead sea bream and provides useful background information for rational design of functional feeds aimed at improving fish gut health.


Assuntos
Plexo Mientérico/citologia , Plexo Mientérico/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Dourada/anatomia & histologia , Dourada/metabolismo , Animais , Tamanho Celular , Imuno-Histoquímica , Músculo Liso/citologia , Músculo Liso/crescimento & desenvolvimento , Músculo Liso/inervação , Músculo Liso/metabolismo , Plexo Mientérico/crescimento & desenvolvimento , Neurotransmissores/metabolismo , Dourada/crescimento & desenvolvimento
15.
Biomed Chromatogr ; 32(5): e4168, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29235121

RESUMO

A simple and rapid high-performance liquid chromatographic method with ultraviolet detection was developed for the quantitative determination of retigabine, known also as ezogabine, in human plasma. The assay uses a simple solid-phase extraction for sample preparation and direct injection of the extract into the chromatograph. Flupirtine is used as an internal standard. Chromatographic separation is achieved on a C18 Chromolith column (Chromolith Performance, 100 × 4.6 mm i.d.), using as mobile phase water/acetonitrile/methanol (72:18:10 v/v/v) mixed with 0.1% of 85% phosphoric acid. Isocratic elution is conducted at a flow rate of 1.5 mL min-1 . The total duration of a chromatographic run is 7 min. Calibration curves are linear over the 25-2000 ng mL-1 concentration range, with a limit of quantitation of 25 ng mL-1 . Other performance characteristics include high precision (intra- and inter-day coefficients of variation ≤12.6%) and high accuracy (99.7%-108.7%). The method is suitable for the investigation of concentration-response relationships in patients receiving therapeutic doses of retigabine.


Assuntos
Carbamatos/sangue , Cromatografia Líquida de Alta Pressão/métodos , Fenilenodiaminas/sangue , Espectrofotometria Ultravioleta/métodos , Carbamatos/química , Estabilidade de Medicamentos , Humanos , Modelos Lineares , Fenilenodiaminas/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Sci Rep ; 7(1): 17644, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247178

RESUMO

Myenteric plexus alterations hamper gastrointestinal motor function during intestinal inflammation. Hyaluronan (HA), an extracellular matrix glycosaminoglycan involved in inflammatory responses, may play a role in this process. In the colon of control rats, HA-binding protein (HABP), was detected in myenteric neuron soma, perineuronal space and ganglia surfaces. Prominent hyaluronan synthase 2 (HAS2) staining was found in myenteric neuron cytoplasm, suggesting that myenteric neurons produce HA. In the myenteric plexus of rats with 2, 4-dinitrobenzene sulfonic (DNBS)-induced colitis HABP staining was altered in the perineuronal space, while both HABP staining and HA levels increased in the muscularis propria. HAS2 immunopositive myenteric neurons and HAS2 mRNA and protein levels also increased. Overall, these observations suggest that inflammation alters HA distribution and levels in the gut neuromuscular compartment. Such changes may contribute to alterations in the myenteric plexus.


Assuntos
Colite/metabolismo , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Plexo Mientérico/metabolismo , Neurônios/metabolismo , Animais , Benzenossulfonatos , Células Cultivadas , Colite/induzido quimicamente , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Motilidade Gastrointestinal , Regulação da Expressão Gênica , Humanos , Masculino , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Ratos , Ratos Sprague-Dawley
17.
Br J Pharmacol ; 174(20): 3623-3639, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28755521

RESUMO

BACKGROUND AND PURPOSE: Gut microbiota is essential for the development of the gastrointestinal system, including the enteric nervous system (ENS). Perturbations of gut microbiota in early life have the potential to alter neurodevelopment leading to functional bowel disorders later in life. We examined the hypothesis that gut dysbiosis impairs the structural and functional integrity of the ENS, leading to gut dysmotility in juvenile mice. EXPERIMENTAL APPROACH: To induce gut dysbiosis, broad-spectrum antibiotics were administered by gavage to juvenile (3weeks old) male C57Bl/6 mice for 14 days. Bile acid composition in the intestinal lumen was analysed by liquid chromatography-mass spectrometry. Changes in intestinal motility were evaluated by stool frequency, transit of a fluorescent-labelled marker and isometric muscle responses of ileal full-thickness preparations to receptor and non-receptor-mediated stimuli. Alterations in ENS integrity were assessed by immunohistochemistry and Western blot analysis. KEY RESULTS: Antibiotic treatment altered gastrointestinal transit, luminal bile acid metabolism and bowel architecture. Gut dysbiosis resulted in distorted glial network, loss of myenteric plexus neurons, altered cholinergic, tachykininergic and nitrergic neurotransmission associated with reduced number of nNOS neurons and different ileal distribution of the toll-like receptor TLR2. Functional defects were partly reversed by activation of TLR2 signalling. CONCLUSIONS AND IMPLICATIONS: Gut dysbiosis caused complex morpho-functional neuromuscular rearrangements, characterized by structural defects of the ENS and increased tachykininergic neurotransmission. Altogether, our findings support the beneficial role of enteric microbiota for ENS homeostasis instrumental in ensuring proper gut neuromuscular function during critical stages of development.


Assuntos
Antibacterianos , Disbiose/fisiopatologia , Microbioma Gastrointestinal , Animais , Ceco/efeitos dos fármacos , Ceco/patologia , Disbiose/induzido quimicamente , Disbiose/patologia , Motilidade Gastrointestinal/efeitos dos fármacos , Íleo/efeitos dos fármacos , Íleo/inervação , Íleo/patologia , Íleo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Plexo Mientérico/efeitos dos fármacos , Plexo Mientérico/patologia , Estômago/efeitos dos fármacos , Estômago/patologia , Transmissão Sináptica/efeitos dos fármacos
18.
Am J Physiol Gastrointest Liver Physiol ; 312(4): G374-G389, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28154013

RESUMO

Neuronal and inducible nitric oxide synthase (nNOS and iNOS) play a protective and damaging role, respectively, on the intestinal neuromuscular function after ischemia-reperfusion (I/R) injury. To uncover the molecular pathways underlying this dichotomy we investigated their possible correlation with the orthodenticle homeobox proteins OTX1 and OTX2 in the rat small intestine myenteric plexus after in vivo I/R. Homeobox genes are fundamental for the regulation of the gut wall homeostasis both during development and in pathological conditions (inflammation, cancer). I/R injury was induced by temporary clamping the superior mesenteric artery under anesthesia, followed by 24 and 48 h of reperfusion. At 48 h after I/R intestinal transit decreased and was further reduced by Nω-propyl-l-arginine hydrochloride (NPLA), a nNOS-selective inhibitor. By contrast this parameter was restored to control values by 1400W, an iNOS-selective inhibitor. In longitudinal muscle myenteric plexus (LMMP) preparations, iNOS, OTX1, and OTX2 mRNA and protein levels increased at 24 and 48 h after I/R. At both time periods, the number of iNOS- and OTX-immunopositive myenteric neurons increased. nNOS mRNA, protein levels, and neurons were unchanged. In LMMPs, OTX1 and OTX2 mRNA and protein upregulation was reduced by 1400W and NPLA, respectively. In myenteric ganglia, OTX1 and OTX2 staining was superimposed with that of iNOS and nNOS, respectively. Thus in myenteric ganglia iNOS- and nNOS-derived NO may promote OTX1 and OTX2 upregulation, respectively. We hypothesize that the neurodamaging and neuroprotective roles of iNOS and nNOS during I/R injury in the gut may involve corresponding activation of molecular pathways downstream of OTX1 and OTX2.NEW & NOTEWORTHY Intestinal ischemia-reperfusion (I/R) injury induces relevant alterations in myenteric neurons leading to dismotility. Nitrergic neurons seem to be selectively involved. In the present study the inference that both neuronal and inducible nitric oxide synthase (nNOS and iNOS) expressing myenteric neurons may undergo important changes sustaining derangements of motor function is reinforced. In addition, we provide data to suggest that NO produced by iNOS and nNOS regulates the expression of the vital transcription factors orthodenticle homeobox protein 1 and 2 during an I/R damage.


Assuntos
Intestino Delgado/irrigação sanguínea , Plexo Mientérico/metabolismo , Óxido Nítrico/metabolismo , Fatores de Transcrição Otx/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Trânsito Gastrointestinal/efeitos dos fármacos , Trânsito Gastrointestinal/fisiologia , Masculino , Plexo Mientérico/patologia , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Ratos , Ratos Wistar , Traumatismo por Reperfusão/patologia
19.
Neuropharmacology ; 111: 14-33, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27561972

RESUMO

Several studies have been carried out in the last 30 years in the attempt to clarify the possible role of glutamate as a neurotransmitter/neuromodulator in the gastrointestinal tract. Such effort has provided immunohistochemical, biomolecular and functional data suggesting that the entire glutamatergic neurotransmitter machinery is present in the complex circuitries of the enteric nervous system (ENS), which participates to the local coordination of gastrointestinal functions. Glutamate is also involved in the regulation of the brain-gut axis, a bi-directional connection pathway between the central nervous system (CNS) and the gut. The neurotransmitter contributes to convey information, via afferent fibers, from the gut to the brain, and to send appropriate signals, via efferent fibers, from the brain to control gut secretion and motility. In analogy with the CNS, an increasing number of studies suggest that dysregulation of the enteric glutamatergic neurotransmitter machinery may lead to gastrointestinal dysfunctions. On the whole, this research field has opened the possibility to find new potential targets for development of drugs for the treatment of gastrointestinal diseases. The present review analyzes the more recent literature on enteric glutamatergic neurotransmission both in physiological and pathological conditions, such as gastroesophageal reflux, gastric acid hypersecretory diseases, inflammatory bowel disease, irritable bowel syndrome and intestinal ischemia/reperfusion injury.


Assuntos
Trato Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiopatologia , Ácido Glutâmico/fisiologia , Transmissão Sináptica , Animais , Refluxo Gastroesofágico/fisiopatologia , Trato Gastrointestinal/inervação , Humanos , Doenças Inflamatórias Intestinais/fisiopatologia , Síndrome do Intestino Irritável/fisiopatologia , Neurônios Aferentes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...