Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Phys Rev Lett ; 117(14): 142701, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740831

RESUMO

The ß-decay intensity of ^{70}Co was measured for the first time using the technique of total absorption spectroscopy. The large ß-decay Q value [12.3(3) MeV] offers a rare opportunity to study ß-decay properties in a broad energy range. Two surprising features were observed in the experimental results, namely, the large fragmentation of the ß intensity at high energies, as well as the strong competition between γ rays and neutrons, up to more than 2 MeV above the neutron-separation energy. The data are compared to two theoretical calculations: the shell model and the quasiparticle random phase approximation (QRPA). Both models seem to be missing a significant strength at high excitation energies. Possible interpretations of this discrepancy are discussed. The shell model is used for a detailed nuclear structure interpretation and helps to explain the observed γ-neutron competition. The comparison to the QRPA calculations is done as a means to test a model that provides global ß-decay properties for astrophysical calculations. Our work demonstrates the importance of performing detailed comparisons to experimental results, beyond the simple half-life comparisons. A realistic and robust description of the ß-decay intensity is crucial for our understanding of nuclear structure as well as of r-process nucleosynthesis.

3.
Phys Rev Lett ; 116(24): 242502, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27367386

RESUMO

Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on ^{69}Ni, a nucleus that is five neutrons away from the last stable isotope of Ni. The implications of this measurement on nucleosynthesis around mass 70 are discussed, and the impact of similar future measurements on the understanding of the origin of the heavy elements in the cosmos is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...