Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 14(1): 10975, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744876

RESUMO

Common wheat (Triticum aestivum L.) is a major staple food crop, providing a fifth of food calories and proteins to the world's human population. Despite the impressive growth in global wheat production in recent decades, further increases in grain yield are required to meet future demands. Here we estimated genetic gain and genotype stability for grain yield (GY) and determined the trait associations that contributed uniquely or in combination to increased GY, through a retrospective analysis of top-performing genotypes selected from the elite spring wheat yield trial (ESWYT) evaluated internationally during a 14-year period (2003 to 2016). Fifty-six ESWYT genotypes and four checks were sown under optimally irrigated conditions in three phenotyping trials during three consecutive growing seasons (2018-2019 to 2020-2021) at Norman E. Borlaug Research Station, Ciudad Obregon, Mexico. The mean GY rose from 6.75 (24th ESWYT) to 7.87 t ha-1 (37th ESWYT), representing a cumulative increase of 1.12 t ha-1. The annual genetic gain for GY was estimated at 0.96% (65 kg ha-1 year-1) accompanied by a positive trend in genotype stability over time. The GY progress was mainly associated with increases in biomass (BM), grain filling rate (GFR), total radiation use efficiency (RUE_total), grain weight per spike (GWS), and reduction in days to heading (DTH), which together explained 95.5% of the GY variation. Regression lines over the years showed significant increases of 0.015 kg m-2 year-1 (p < 0.01), 0.074 g m-2 year-1 (p < 0.05), and 0.017 g MJ-1 year-1 (p < 0.001) for BM, GFR, and RUE_total, respectively. Grain weight per spike exhibited a positive but no significant trend (0.014 g year-1, p = 0.07), whereas a negative tendency for DTH was observed (- 0.43 days year-1, p < 0.001). Analysis of the top ten highest-yielding genotypes revealed differential GY-associated trait contributions, demonstrating that improved GY can be attained through different mechanisms and indicating that no single trait criterion is adopted by CIMMYT breeders for developing new superior lines. We conclude that CIMMYT's Bread Wheat Breeding Program has continued to deliver adapted and more productive wheat genotypes to National partners worldwide, mainly driven by enhancing RUE_total and GFR and that future yield increases could be achieved by intercrossing genetically diverse top performer genotypes.


Assuntos
Grão Comestível , Genótipo , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Fenótipo , Estações do Ano , México
3.
Front Plant Sci ; 15: 1349569, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812738

RESUMO

Introduction: Because Genomic selection (GS) is a predictive methodology, it needs to guarantee high-prediction accuracies for practical implementations. However, since many factors affect the prediction performance of this methodology, its practical implementation still needs to be improved in many breeding programs. For this reason, many strategies have been explored to improve the prediction performance of this methodology. Methods: When environmental covariates are incorporated as inputs in the genomic prediction models, this information only sometimes helps increase prediction performance. For this reason, this investigation explores the use of feature engineering on the environmental covariates to enhance the prediction performance of genomic prediction models. Results and discussion: We found that across data sets, feature engineering helps reduce prediction error regarding only the inclusion of the environmental covariates without feature engineering by 761.625% across predictors. These results are very promising regarding the potential of feature engineering to enhance prediction accuracy. However, since a significant gain in prediction accuracy was observed in only some data sets, further research is required to guarantee a robust feature engineering strategy to incorporate the environmental covariates.

4.
Genes (Basel) ; 15(4)2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38674352

RESUMO

Genomic prediction relates a set of markers to variability in observed phenotypes of cultivars and allows for the prediction of phenotypes or breeding values of genotypes on unobserved individuals. Most genomic prediction approaches predict breeding values based solely on additive effects. However, the economic value of wheat lines is not only influenced by their additive component but also encompasses a non-additive part (e.g., additive × additive epistasis interaction). In this study, genomic prediction models were implemented in three target populations of environments (TPE) in South Asia. Four models that incorporate genotype × environment interaction (G × E) and genotype × genotype (GG) were tested: Factor Analytic (FA), FA with genomic relationship matrix (FA + G), FA with epistatic relationship matrix (FA + GG), and FA with both genomic and epistatic relationship matrices (FA + G + GG). Results show that the FA + G and FA + G + GG models displayed the best and a similar performance across all tests, leading us to infer that the FA + G model effectively captures certain epistatic effects. The wheat lines tested in sites in different TPE were predicted with different precisions depending on the cross-validation employed. In general, the best prediction accuracy was obtained when some lines were observed in some sites of particular TPEs and the worse genomic prediction was observed when wheat lines were never observed in any site of one TPE.


Assuntos
Epistasia Genética , Interação Gene-Ambiente , Genoma de Planta , Genômica , Modelos Genéticos , Melhoramento Vegetal , Triticum , Triticum/genética , Melhoramento Vegetal/métodos , Genômica/métodos , Genótipo , Fenótipo
5.
Genes (Basel) ; 15(3)2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38540344

RESUMO

Genomic selection (GS) is revolutionizing plant breeding. However, its practical implementation is still challenging, since there are many factors that affect its accuracy. For this reason, this research explores data augmentation with the goal of improving its accuracy. Deep neural networks with data augmentation (DA) generate synthetic data from the original training set to increase the training set and to improve the prediction performance of any statistical or machine learning algorithm. There is much empirical evidence of their success in many computer vision applications. Due to this, DA was explored in the context of GS using 14 real datasets. We found empirical evidence that DA is a powerful tool to improve the prediction accuracy, since we improved the prediction accuracy of the top lines in the 14 datasets under study. On average, across datasets and traits, the gain in prediction performance of the DA approach regarding the Conventional method in the top 20% of lines in the testing set was 108.4% in terms of the NRMSE and 107.4% in terms of the MAAPE, but a worse performance was observed on the whole testing set. We encourage more empirical evaluations to support our findings.


Assuntos
Genoma de Planta , Genômica , Fenótipo , Aprendizado de Máquina , Redes Neurais de Computação
6.
Front Plant Sci ; 15: 1324090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504889

RESUMO

In the field of plant breeding, various machine learning models have been developed and studied to evaluate the genomic prediction (GP) accuracy of unseen phenotypes. Deep learning has shown promise. However, most studies on deep learning in plant breeding have been limited to small datasets, and only a few have explored its application in moderate-sized datasets. In this study, we aimed to address this limitation by utilizing a moderately large dataset. We examined the performance of a deep learning (DL) model and compared it with the widely used and powerful best linear unbiased prediction (GBLUP) model. The goal was to assess the GP accuracy in the context of a five-fold cross-validation strategy and when predicting complete environments using the DL model. The results revealed the DL model outperformed the GBLUP model in terms of GP accuracy for two out of the five included traits in the five-fold cross-validation strategy, with similar results in the other traits. This indicates the superiority of the DL model in predicting these specific traits. Furthermore, when predicting complete environments using the leave-one-environment-out (LOEO) approach, the DL model demonstrated competitive performance. It is worth noting that the DL model employed in this study extends a previously proposed multi-modal DL model, which had been primarily applied to image data but with small datasets. By utilizing a moderately large dataset, we were able to evaluate the performance and potential of the DL model in a context with more information and challenging scenario in plant breeding.

7.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38079160

RESUMO

Genomic selection is revolutionizing plant breeding. However, its practical implementation is still very challenging, since predicted values do not necessarily have high correspondence to the observed phenotypic values. When the goal is to predict within-family, it is not always possible to obtain reasonable accuracies, which is of paramount importance to improve the selection process. For this reason, in this research, we propose the Adversaria-Boruta (AB) method, which combines the virtues of the adversarial validation (AV) method and the Boruta feature selection method. The AB method operates primarily by minimizing the disparity between training and testing distributions. This is accomplished by reducing the weight assigned to markers that display the most significant differences between the training and testing sets. Therefore, the AB method built a weighted genomic relationship matrix that is implemented with the genomic best linear unbiased predictor (GBLUP) model. The proposed AB method is compared using 12 real data sets with the GBLUP model that uses a nonweighted genomic relationship matrix. Our results show that the proposed AB method outperforms the GBLUP by 8.6, 19.7, and 9.8% in terms of Pearson's correlation, mean square error, and normalized root mean square error, respectively. Our results support that the proposed AB method is a useful tool to improve the prediction accuracy of a complete family, however, we encourage other investigators to evaluate the AB method to increase the empirical evidence of its potential.


Assuntos
Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Genoma , Genômica/métodos , Modelos Lineares , Fenótipo , Genótipo
8.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762107

RESUMO

Genomic selection (GS) plays a pivotal role in hybrid prediction. It can enhance the selection of parental lines, accurately predict hybrid performance, and harness hybrid vigor. Likewise, it can optimize breeding strategies by reducing field trial requirements, expediting hybrid development, facilitating targeted trait improvement, and enhancing adaptability to diverse environments. Leveraging genomic information empowers breeders to make informed decisions and significantly improve the efficiency and success rate of hybrid breeding programs. In order to improve the genomic ability performance, we explored the incorporation of parental phenotypic information as covariates under a multi-trait framework. Approach 1, referred to as Pmean, directly utilized parental phenotypic information without any preprocessing. While approach 2, denoted as BV, replaced the direct use of phenotypic values of both parents with their respective breeding values. While an improvement in prediction performance was observed in both approaches, with a minimum 4.24% reduction in the normalized root mean square error (NRMSE), the direct incorporation of parental phenotypic information in the Pmean approach slightly outperformed the BV approach. We also compared these two approaches using linear and nonlinear kernels, but no relevant gain was observed. Finally, our results increase empirical evidence confirming that the integration of parental phenotypic information helps increase the prediction performance of hybrids.


Assuntos
Hibridização Genética , Modelos Genéticos , Genoma de Planta , Fenótipo , Genômica/métodos , Melhoramento Vegetal
9.
Front Genet ; 14: 1209275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554404

RESUMO

Genomic selection (GS) is transforming plant and animal breeding, but its practical implementation for complex traits and multi-environmental trials remains challenging. To address this issue, this study investigates the integration of environmental information with genotypic information in GS. The study proposes the use of two feature selection methods (Pearson's correlation and Boruta) for the integration of environmental information. Results indicate that the simple incorporation of environmental covariates may increase or decrease prediction accuracy depending on the case. However, optimal incorporation of environmental covariates using feature selection significantly improves prediction accuracy in four out of six datasets between 14.25% and 218.71% under a leave one environment out cross validation scenario in terms of Normalized Root Mean Squared Error, but not relevant gain was observed in terms of Pearson´s correlation. In two datasets where environmental covariates are unrelated to the response variable, feature selection is unable to enhance prediction accuracy. Therefore, the study provides empirical evidence supporting the use of feature selection to improve the prediction power of GS.

10.
Genes (Basel) ; 14(4)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37107685

RESUMO

While sparse testing methods have been proposed by researchers to improve the efficiency of genomic selection (GS) in breeding programs, there are several factors that can hinder this. In this research, we evaluated four methods (M1-M4) for sparse testing allocation of lines to environments under multi-environmental trails for genomic prediction of unobserved lines. The sparse testing methods described in this study are applied in a two-stage analysis to build the genomic training and testing sets in a strategy that allows each location or environment to evaluate only a subset of all genotypes rather than all of them. To ensure a valid implementation, the sparse testing methods presented here require BLUEs (or BLUPs) of the lines to be computed at the first stage using an appropriate experimental design and statistical analyses in each location (or environment). The evaluation of the four cultivar allocation methods to environments of the second stage was done with four data sets (two large and two small) under a multi-trait and uni-trait framework. We found that the multi-trait model produced better genomic prediction (GP) accuracy than the uni-trait model and that methods M3 and M4 were slightly better than methods M1 and M2 for the allocation of lines to environments. Some of the most important findings, however, were that even under a scenario where we used a training-testing relation of 15-85%, the prediction accuracy of the four methods barely decreased. This indicates that genomic sparse testing methods for data sets under these scenarios can save considerable operational and financial resources with only a small loss in precision, which can be shown in our cost-benefit analysis.


Assuntos
Modelos Genéticos , Melhoramento Vegetal , Melhoramento Vegetal/métodos , Genoma de Planta/genética , Fenótipo , Genômica , Produtos Agrícolas/genética
11.
Genes (Basel) ; 14(2)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36833322

RESUMO

Genomic selection (GS) is a methodology that is revolutionizing plant breeding because it can select candidate genotypes without phenotypic evaluation in the field. However, its practical implementation in hybrid prediction remains challenging since many factors affect its accuracy. The main objective of this study was to research the genomic prediction accuracy of wheat hybrids by adding covariates with the hybrid parental phenotypic information to the model. Four types of different models (MA, MB, MC, and MD) with one covariate (same trait to be predicted) (MA_C, MB_C, MC_C, and MD_C) or several covariates (of the same trait and other correlated traits) (MA_AC, MB_AC, MC_AC, and MD_AC) were studied. We found that the four models with parental information outperformed models without parental information in terms of mean square error by at least 14.1% (MA vs. MA_C), 5.5% (MB vs. MB_C), 51.4% (MC vs. MC_C), and 6.4% (MD vs. MD_C) when parental information of the same trait was used and by at least 13.7% (MA vs. MA_AC), 5.3% (MB vs. MB_AC), 55.1% (MC vs. MC_AC), and 6.0% (MD vs. MD_AC) when parental information of the same trait and other correlated traits were used. Our results also show a large gain in prediction accuracy when covariates were considered using the parental phenotypic information, as opposed to marker information. Finally, our results empirically demonstrate that a significant improvement in prediction accuracy was gained by adding parental phenotypic information as covariates; however, this is expensive since, in many breeding programs, the parental phenotypic information is unavailable.


Assuntos
Modelos Genéticos , Triticum , Triticum/genética , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Fenótipo
12.
Plant Genome ; 14(3): e20151, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510790

RESUMO

Sparse testing in genome-enabled prediction in plant breeding can be emulated throughout different line allocations where some lines are observed in all environments (overlap) and others are observed in only one environment (nonoverlap). We studied three general cases of the composition of the sparse testing allocation design for genome-enabled prediction of wheat (Triticum aestivum L.) breeding: (a) completely nonoverlapping wheat lines in environments, (b) completely overlapping wheat lines in all environments, and (c) a proportion of nonoverlapping/overlapping wheat lines allocated in the environments. We also studied several cases in which the size of the testing population was systematically decreased. The study used three extensive wheat data sets (W1, W2, and W3). Three different genome-enabled prediction models (M1-M3) were used to study the effect of the sparse testing in terms of the genomic prediction accuracy. Model M1 included only main effects of environments and lines; M2 included main effects of environments, lines, and genomic effects; whereas the remaining model (M3) also incorporated the genomic × environment interaction (GE). The results show that the GE component of the genome-based model M3 captures a larger genetic variability than the main genomic effects term from models M1 and M2. In addition, model M3 provides higher prediction accuracy than models M1 and M2 for the same allocation designs (different combinations of nonoverlapping/overlapping lines in environments and training set sizes). Overlapped sets of 30-50 lines in all the environments provided stable genomic-enabled prediction accuracy. Reducing the size of the testing populations under all allocation designs decreases the prediction accuracy, which recovers when more lines are tested in all environments. Model M3 offers the possibility of maintaining the prediction accuracy throughout both extreme situations of all nonoverlapping lines and all overlapping lines.


Assuntos
Melhoramento Vegetal , Triticum , Interação Gene-Ambiente , Genótipo , Modelos Genéticos , Fenótipo , Triticum/genética
13.
J Exp Bot ; 72(14): 5134-5157, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34139769

RESUMO

Despite being the world's most widely grown crop, research investments in wheat (Triticum aestivum and Triticum durum) fall behind those in other staple crops. Current yield gains will not meet 2050 needs, and climate stresses compound this challenge. However, there is good evidence that heat and drought resilience can be boosted through translating promising ideas into novel breeding technologies using powerful new tools in genetics and remote sensing, for example. Such technologies can also be applied to identify climate resilience traits from among the vast and largely untapped reserve of wheat genetic resources in collections worldwide. This review describes multi-pronged research opportunities at the focus of the Heat and Drought Wheat Improvement Consortium (coordinated by CIMMYT), which together create a pipeline to boost heat and drought resilience, specifically: improving crop design targets using big data approaches; developing phenomic tools for field-based screening and research; applying genomic technologies to elucidate the bases of climate resilience traits; and applying these outputs in developing next-generation breeding methods. The global impact of these outputs will be validated through the International Wheat Improvement Network, a global germplasm development and testing system that contributes key productivity traits to approximately half of the global wheat-growing area.


Assuntos
Melhoramento Vegetal , Triticum , Clima , Secas , Pesquisa Translacional Biomédica , Triticum/genética
14.
Front Plant Sci ; 12: 638520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108977

RESUMO

In this study, we defined the target population of environments (TPE) for wheat breeding in India, the largest wheat producer in South Asia, and estimated the correlated response to the selection and prediction ability of five selection environments (SEs) in Mexico. We also estimated grain yield (GY) gains in each TPE. Our analysis used meteorological, soil, and GY data from the international Elite Spring Wheat Yield Trials (ESWYT) distributed by the International Maize and Wheat Improvement Center (CIMMYT) from 2001 to 2016. We identified three TPEs: TPE 1, the optimally irrigated Northwestern Plain Zone; TPE 2, the optimally irrigated, heat-stressed North Eastern Plains Zone; and TPE 3, the drought-stressed Central-Peninsular Zone. The correlated response to selection ranged from 0.4 to 0.9 within each TPE. The highest prediction accuracies for GY per TPE were derived using models that included genotype-by-environment interaction and/or meteorological information and their interaction with the lines. The highest prediction accuracies for TPEs 1, 2, and 3 were 0.37, 0.46, and 0.51, respectively, and the respective GY gains were 118, 46, and 123 kg/ha/year. These results can help fine-tune the breeding of elite wheat germplasm with stable yields to reduce farmers' risk from year-to-year environmental variation in India's wheat lands, which cover 30 million ha, account for 100 million tons of grain or more each year, and provide food and livelihoods for hundreds of millions of farmers and consumers in South Asia.

15.
Sci Rep ; 11(1): 5254, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664297

RESUMO

Wheat grain yield (GY) improvement using genomic tools is important for achieving yield breakthroughs. To dissect the genetic architecture of wheat GY potential and stress-resilience, we have designed this large-scale genome-wide association study using 100 datasets, comprising 105,000 GY observations from 55,568 wheat lines evaluated between 2003 and 2019 by the International Maize and Wheat Improvement Center and national partners. We report 801 GY-associated genotyping-by-sequencing markers significant in more than one dataset and the highest number of them were on chromosomes 2A, 6B, 6A, 5B, 1B and 7B. We then used the linkage disequilibrium (LD) between the consistently significant markers to designate 214 GY-associated LD-blocks and observed that 84.5% of the 58 GY-associated LD-blocks in severe-drought, 100% of the 48 GY-associated LD-blocks in early-heat and 85.9% of the 71 GY-associated LD-blocks in late-heat, overlapped with the GY-associated LD-blocks in the irrigated-bed planting environment, substantiating that simultaneous improvement for GY potential and stress-resilience is feasible. Furthermore, we generated the GY-associated marker profiles and analyzed the GY favorable allele frequencies for a large panel of 73,142 wheat lines, resulting in 44.5 million datapoints. Overall, the extensive resources presented in this study provide great opportunities to accelerate breeding for high-yielding and stress-resilient wheat varieties.


Assuntos
Grão Comestível/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Triticum/genética , Alelos , Pão , Mapeamento Cromossômico , Secas , Ligação Genética/genética , Genótipo , Desequilíbrio de Ligação/genética , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
16.
Front Genet ; 11: 589490, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335539

RESUMO

We untangled key regions of the genetic architecture of grain yield (GY) in CIMMYT spring bread wheat by conducting a haplotype-based, genome-wide association study (GWAS), together with an investigation of epistatic interactions using seven large sets of elite yield trials (EYTs) consisting of a total of 6,461 advanced breeding lines. These lines were phenotyped under irrigated and stress environments in seven growing seasons (2011-2018) and genotyped with genotyping-by-sequencing markers. Genome-wide 519 haplotype blocks were constructed, using a linkage disequilibrium-based approach covering 14,036 Mb in the wheat genome. Haplotype-based GWAS identified 7, 4, 10, and 15 stable (significant in three or more EYTs) associations in irrigated (I), mild drought (MD), severe drought (SD), and heat stress (HS) testing environments, respectively. Considering all EYTs and the four testing environments together, 30 stable associations were deciphered with seven hotspots identified on chromosomes 1A, 1B, 2B, 4A, 5B, 6B, and 7B, where multiple haplotype blocks were associated with GY. Epistatic interactions contributed significantly to the genetic architecture of GY, explaining variation of 3.5-21.1%, 3.7-14.7%, 3.5-20.6%, and 4.4- 23.1% in I, MD, SD, and HS environments, respectively. Our results revealed the intricate genetic architecture of GY, controlled by both main and epistatic effects. The importance of these results for practical applications in the CIMMYT breeding program is discussed.

17.
Front Plant Sci ; 11: 564183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042185

RESUMO

Genomic breeding technologies offer new opportunities for grain yield (GY) improvement in common wheat. In this study, we have evaluated the potential of genomic selection (GS) in breeding for GY in wheat by modeling a large dataset of 48,562 GY observations from the International Maize and Wheat Improvement Center (CIMMYT), including 36 yield trials evaluated between 2012 and 2019 in Obregón, Sonora, Mexico. Our key objective was to determine the value that GS can add to the current three-stage yield testing strategy at CIMMYT, and we draw inferences from predictive modeling of GY using 420 different populations, environments, cycles, and model combinations. First, we evaluated the potential of genomic predictions for minimizing the number of replications and lines tested within a site and year and obtained mean prediction accuracies (PAs) of 0.56, 0.5, and 0.42 in Stages 1, 2, and 3 of yield testing, respectively. However, these PAs were similar to the mean pedigree-based PAs indicating that genomic relationships added no value to pedigree relationships in the yield testing stages, characterized by small family-sizes. Second, we evaluated genomic predictions for minimizing GY testing across stages/years in Obregón and observed mean PAs of 0.41, 0.31, and 0.37, respectively when GY in the full irrigation bed planting (FI BP), drought stress (DS), and late-sown heat stress environments were predicted across years using genotype × environment (G × E) interaction models. Third, we evaluated genomic predictions for minimizing the number of yield testing environments and observed that in Stage 2, the FI BP, full irrigation flat planting and early-sown heat stress environments (mean PA of 0.37 ± 0.12) and the reduced irrigation and DS environments (mean PA of 0.45 ± 0.07) had moderate predictabilities among them. However, in both predictions across years and environments, the PAs were inconsistent across years and the G × E models had no advantage over the baseline model with environment and line effects. Overall, our results provide excellent insights into the predictability of a quantitative trait like GY and will have important implications on the future design of GS for GY in wheat breeding programs globally.

18.
Front Plant Sci ; 11: 580136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973861

RESUMO

Breeding for grain yield (GY) in bread wheat at the International Maize and Wheat Improvement Center (CIMMYT) involves three-stage testing at Obregon, Mexico in different selection environments (SEs). To understand the efficiency of selection in the SEs, we performed a large retrospective quantitative genetics study using CIMMYT's yield trials evaluated in the SEs (2013-2014 to 2017-2018), the South Asia Bread Wheat Genomic Prediction Yield Trials (SABWGPYTs) evaluated in India, Pakistan, and Bangladesh (2014-2015 to 2017-2018), and the Elite Spring Wheat Yield Trials (ESWYTs) evaluated in several sites globally (2003-2004 to 2016-2017). First, we compared the narrow-sense heritabilities in the Obregon SEs and target sites and observed that the mean heritability in the SEs was 44.2 and 92.3% higher than the mean heritabilities in the SABWGPYT and ESWYT sites, respectively. Second, we observed significant genetic correlations between a SE in Obregon and all the five SABWGPYT sites and 65.1% of the ESWYT sites. Third, we observed high ratios of response to indirect selection in the SEs of Obregon with a mean of 0.80 ± 0.21 and 2.6 ± 5.4 in the SABWGPYT and ESWYT sites, respectively. Furthermore, our results also indicated that for all the SABWGPYT sites and 82% of the ESWYT sites, a response greater than 0.5 can be achieved by indirect selection for GY in Obregon. We also performed genomic prediction for GY in the target sites using the performance of the same lines in the SEs of Obregon and observed moderate mean prediction accuracies of 0.24 ± 0.08 and 0.28 ± 0.08 in the SABWGPYT and ESWYT sites, respectively using the genotype x environment (GxE) model. However, we observed similar accuracies using the baseline model with environment and line effects and no advantage of modeling GxE interactions. Overall, this study provides important insights into the suitability of the Obregon SEs in breeding for GY, while the variable genomic predictabilities of GY and the high year-to-year GY fluctuations reported, highlight the importance of multi-environment testing across time and space to stave off GxE induced uncertainties in varietal yields.

19.
Front Plant Sci ; 11: 824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760411

RESUMO

Rust diseases continuously threaten global wheat production: stem rust, leaf rust, and yellow rust caused by Puccinia graminis f. sp. tritici, Puccinia triticina, and Puccinia striiformis f. sp. tritici, respectively. Recent studies indicated that the average losses from all these three rusts reached up to 15.04 million tons per year, which is equivalent to an annual average loss of around US $2.9 billion per year. The major focus of Mexican and worldwide breeding programs is the release of rust resistant cultivars, as this is considered the best option for controlling rust diseases. In Mexico, the emphasis has been placed on genes that confer partial resistance in the adult plant stage and against a broad spectrum of rust races since the 1970s. In this study, a set of the first-generation tall varieties developed and released in the 1940s and 1950s, the first semi-dwarfs, and other releases in Mexico, all of which showed different levels of rust resistance have been phenotyped for the three rust diseases and genotyped. Results of the molecular marker detection indicated that Lr34, Lr46, Lr67, and Lr68 alone or in different gene combinations were present among the wheat cultivars. Flag leaf tip necrosis was present in all cultivars and most were positive for brown necrosis or Pseudo Black Chaff associated with the Sr2 stem rust resistance complex. The phenotypic responses to the different rust infections indicate the presence of additional slow rusting and race-specific resistance genes. The study reveals the association of the slow rusting genes with durable resistance to the three rusts including Ug99 in cultivars bred before the green revolution such as Frontera, Supremo 211, Chapingo 48, Yaqui 50, Kentana 52, Bajio 52, Bajio 53, Yaqui 53, Chapingo 53, Yaktana Tardio 54, and Mayo 54 and their descendants after intercrossing and recombination. These slow rusting genes are the backbone of the resistance in the current Mexican germplasm.

20.
Nat Genet ; 51(10): 1530-1539, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548720

RESUMO

Bread wheat improvement using genomic tools is essential for accelerating trait genetic gains. Here we report the genomic predictabilities of 35 key traits and demonstrate the potential of genomic selection for wheat end-use quality. We also performed a large genome-wide association study that identified several significant marker-trait associations for 50 traits evaluated in South Asia, Africa and the Americas. Furthermore, we built a reference wheat genotype-phenotype map, explored allele frequency dynamics over time and fingerprinted 44,624 wheat lines for trait-associated markers, generating over 7.6 million data points, which together will provide a valuable resource to the wheat community for enhancing productivity and stress resilience.


Assuntos
Resistência à Doença/genética , Genômica/métodos , Locos de Características Quantitativas , Estresse Fisiológico/imunologia , Triticum/crescimento & desenvolvimento , Triticum/imunologia , Ascomicetos/fisiologia , Mapeamento Cromossômico , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Estudos de Associação Genética , Marcadores Genéticos , Genoma de Planta , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Seleção Genética , Estresse Fisiológico/genética , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA