Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 125(4): 785-99, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16713568

RESUMO

Activity deprivation in neurons induces a slow compensatory scaling up of synaptic strength, reflecting a homeostatic mechanism for stabilizing neuronal activity. Prior studies have focused on the loss of action potential (AP) driven neurotransmission in synaptic homeostasis. Here, we show that the miniature synaptic transmission that persists during AP blockade profoundly shapes the time course and mechanism of homeostatic scaling. A brief blockade of NMDA receptor (NMDAR) mediated miniature synaptic events ("minis") rapidly scales up synaptic strength, over an order of magnitude faster than with AP blockade alone. The rapid scaling induced by NMDAR mini blockade is mediated by increased synaptic expression of surface GluR1 and the transient incorporation of Ca2+-permeable AMPA receptors at synapses; both of these changes are implemented locally within dendrites and require dendritic protein synthesis. These results indicate that NMDAR signaling during miniature synaptic transmission serves to stabilize synaptic function through active suppression of dendritic protein synthesis.


Assuntos
Dendritos/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Cobalto/metabolismo , Agonistas de Aminoácidos Excitatórios/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Homeostase , Técnicas In Vitro , Técnicas de Patch-Clamp , Subunidades Proteicas/metabolismo , Ratos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/fisiologia
2.
Dev Biol ; 288(1): 284-93, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16263107

RESUMO

Corneal keratocytes have a remarkable ability to heal the cornea throughout life. Given their developmental origin from the cranial neural crest, we asked whether this regenerative ability was related to the stem cell-like properties of their neural crest precursors. To this end, we challenged corneal stromal keratocytes by injecting them into a new environment along cranial neural crest migratory pathways. The results show that injected stromal keratocytes change their phenotype, proliferate and migrate ventrally adjacent to host neural crest cells. They then contribute to the corneal endothelial and stromal layers, the musculature of the eye, mandibular process, blood vessels and cardiac cushion tissue of the host. However, they fail to form neurons in cranial ganglia or branchial arch cartilage, illustrating that they are at least partially restricted progenitors rather than stem cells. The data show that, even at late embryonic stages, corneal keratocytes are not terminally differentiated, but maintain plasticity and multipotentiality, contributing to non-neuronal cranial neural crest derivatives.


Assuntos
Córnea/citologia , Crista Neural/citologia , Regeneração/fisiologia , Células-Tronco/citologia , Animais , Vasos Sanguíneos/embriologia , Cartilagem/citologia , Diferenciação Celular/fisiologia , Embrião de Galinha , Corpo Ciliar/embriologia , Córnea/embriologia , Córnea/fisiologia , Coturnix/embriologia , Coração/embriologia , Iris/embriologia , Crista Neural/fisiologia , Neurônios/citologia , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...