Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 24(18): 15325-15339, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28502050

RESUMO

We measured mercury methylation potentials and a suite of related biogeochemical parameters in sediment cores and porewater from two geochemically distinct sites in the Allequash Creek wetland, northern Wisconsin, USA. We found a high degree of spatial variability in the methylation rate potentials but no significant differences between the two sites. We identified the primary geochemical factors controlling net methylmercury production at this site to be acid-volatile sulfide, dissolved organic carbon, total dissolved iron, and porewater iron(II). Season and demethylation rates also appear to regulate net methylmercury production. Our equilibrium speciation modeling demonstrated that sulfide likely regulated methylation rates by controlling the speciation of inorganic mercury and therefore its bioavailability to methylating bacteria. We found that no individual geochemical parameter could explain a significant amount of the observed variability in mercury methylation rates, but we found significant multivariate relationships, supporting the widely held understanding that net methylmercury production is balance of several simultaneously occurring processes.


Assuntos
Mercúrio/química , Metilação , Compostos de Metilmercúrio , Poluentes Químicos da Água/química , Sedimentos Geológicos , Áreas Alagadas
2.
Environ Res ; 133: 407-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24972509

RESUMO

Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion.


Assuntos
Exposição Ambiental , Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Oryza/toxicidade , Agricultura/métodos , Animais , Mercúrio/química , Mercúrio/metabolismo , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/metabolismo , Oryza/química , Oryza/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...