Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 131(5-6): 307-315, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884616

RESUMO

An interesting conundrum was recently revealed by R. Abbott when he found that the number of hybrid zones reported in the literature for plants is very low, given the propensity of plants to hybridise. In another literature survey on hybrid zones performed over the period 1970-2022, we found that the number of hybrid zones reported for vertebrates was 2.3 times greater than that reported for vascular plants, even though there are about six times more vascular plant species than vertebrates. Looking at the number of papers reporting hybrid zones, there are 4.9 times more on vertebrates than on vascular plants. These figures support the relevance of this conundrum. In this paper we aim to shed light on this question by providing a structured discussion of the causes that may underlie this conundrum. We propose six non-mutually exclusive factors, namely lack or deficit of spatial structure, lack or deficit of genetic structure, effects of hybridisation between non-closely related species, lability of plant hybrid zones over time, botanists' perception of hybridisation, and deficit of population genetic data. There does not appear to be a single factor that explains our puzzle, which applies to all cases of plants where hybridisation is detected but no hybrid zone is reported. It is argued that some plant features suggest that the puzzle is not, at least entirely, due to insufficient knowledge of the specific cases, a hypothesis that should be addressed with a wider range of empirical data across different taxonomic groups.


Assuntos
Hibridização Genética , Plantas , Masculino , Animais , Plantas/genética , Genética Populacional
2.
Mol Phylogenet Evol ; 156: 107024, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33271372

RESUMO

Understanding the role and impact of reticulation in phylogenetic inquiry has improved with extended use of high throughput sequencing data. Yet, due to the dynamism of genomes over evolutionary time, disentangling old hybridization events remains a serious challenge. Phalacrocarpum (DC.) Willk. is one of the 27 Iberian endemic plant genera, currently considered monotypic but including three subspecies. Its uncertain phylogenetic relationships within tribe Anthemideae (Asteraceae) point to an Early Miocene divergence from its sister group, and its persistent taxonomic instability has been proposed to be due to hybridization. We aim at understanding the evolutionary history of this genus using SNPs called from a genotyping-by-sequencing (GBS) analysis, Sanger sequences-from three plastid DNA regions (psbJ-petA, petB-petD, trnH-psbA) and the nuclear ribosomal ITS regions (cloned)-as well as leaf morphometric multivariate analysis. SNP data and Sanger sequences strongly support the unforeseen existence of a cryptic species in the eastern populations of P. oppositifolium subsp. anomalum. Broad molecular and morphometric patterns of variation found in conflictive populations from the Sanabria Valley region convincingly identify a recent previously undocumented hybrid zone. By contrast, evidence is less conclusive on relationships between subspecies hoffmannseggii, oppositifolium and a second conflictive group distributed along the Galician-Portuguese border (Orense massifs). Although genetic clustering analysis of SNP data suggests that the former subspecies was the maternal progenitor in hybridization events that gave rise to the other two groups, we found considerable uniqueness of ITS ribotypes and plastid haplotypes in them. This result, in the context of Pleistocene climatically-driven range shifts in NW Iberian Peninsula, can be due to periods of isolation, genetic bottlenecks and drift superimposed on old hybridization events. Our study confirms the idea that unravelling old hybridization events may be compromised by the suite of evolutionary processes accumulated subsequently, particularly in areas with a history of climatic instability.


Assuntos
Asteraceae/genética , Especiação Genética , Hibridização Genética , Teorema de Bayes , Análise Discriminante , Europa (Continente) , Genética Populacional , Geografia , Filogenia , Folhas de Planta/anatomia & histologia , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA