Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(13): R630-R632, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981429

RESUMO

Bioturbation, the mixing of sediment through the actions of organisms, is a crucial ecosystem engineering process that controls biogeochemical cycles and helps structure marine ecosystems. Machine learning is helping to develop global maps of the intensity and depth of bioturbation.


Assuntos
Ecossistema , Sedimentos Geológicos , Aprendizado de Máquina , Animais
2.
Proc Biol Sci ; 290(2012): 20232232, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052241

RESUMO

Mass extinctions have fundamentally altered the structure of the biosphere throughout Earth's history. The ecological severity of mass extinctions is well studied in marine ecosystems by categorizing marine taxa into functional groups based on 'ecospace' approaches, but the ecological response of terrestrial ecosystems to mass extinctions is less well understood due to the lack of a comparable methodology. Here, we present a new terrestrial ecospace framework that categorizes fauna into functional groups as defined by tiering, motility and feeding traits. We applied the new terrestrial and traditional marine ecospace analyses to data from the Paleobiology Database across the end-Triassic mass extinction-a time of catastrophic global warming-to compare changes between the marine and terrestrial biospheres. We found that terrestrial functional groups experienced higher extinction severity, that taxonomic and functional richness are more tightly coupled in the terrestrial, and that the terrestrial realm continued to experience high ecological dissimilarity in the wake of the extinction. Although signals of extinction severity and ecological turnover are sensitive to the quality of the terrestrial fossil record, our findings suggest greater ecological pressure from the end-Triassic mass extinction on terrestrial ecosystems than marine ecosystems, contributing to more prolonged terrestrial ecological flux.


Assuntos
Ecossistema , Extinção Biológica , Fósseis , Bases de Dados Factuais , Biodiversidade
3.
Geobiology ; 21(4): 435-453, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36815223

RESUMO

The radiation of bioturbation during the Ediacaran-Cambrian transition has long been hypothesized to have oxygenated sediments, triggering an expansion of the habitable benthic zone and promoting increased infaunal tiering in early Paleozoic benthic communities. However, the effects of bioturbation on sediment oxygen are underexplored with respect to the importance of biomixing and bioirrigation, two bioturbation processes which can have opposite effects on sediment redox chemistry. We categorized trace fossils from the Ediacaran and Terreneuvian as biomixing or bioirrigation fossils and integrated sedimentological proxies for bioturbation intensity with biogeochemical modeling to simulate oxygen penetration depths through the Ediacaran-Cambrian transition. Ultimately, we find that despite dramatic increases in ichnodiversity in the Terreneuvian, biomixing remains the dominant bioturbation behavior, and in contrast to traditional assumptions, Ediacaran-Cambrian bioturbation was unlikely to have resulted in extensive oxygenation of shallow marine sediments globally.


Assuntos
Ecossistema , Oxirredução , Sedimentos Geológicos/química , Fósseis
4.
Sci Adv ; 8(26): eabo0597, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35767613

RESUMO

The Permian-Triassic mass extinction severely depleted biodiversity, primarily observed in the body fossil of well-skeletonized animals. Understanding how whole ecosystems were affected and rebuilt following the crisis requires evidence from both skeletonized and soft-bodied animals; the best comprehensive information on soft-bodied animals comes from ichnofossils. We analyzed abundant trace fossils from 26 sections across the Permian-Triassic boundary in China and report key metrics of ichnodiversity, ichnodisparity, ecospace utilization, and ecosystem engineering. We find that infaunal ecologic structure was well established in the early Smithian. Decoupling of diversity between deposit feeders and suspension feeders in carbonate ramp-platform settings implies that an effect of trophic group amensalism could have delayed the recovery of nonmotile, suspension-feeding epifauna in the Early Triassic. This differential reaction of infaunal ecosystems to variable environmental controls thus played a substantial but heretofore little appreciated evolutionary and ecologic role in the overall recovery in the hot Early Triassic ocean.

5.
Sci Rep ; 10(1): 203, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937801

RESUMO

The end-Permian mass extinction was the most severe mass extinction event of the Phanerozoic and was followed by a several million-year delay in benthic ecosystem recovery. While much work has been done to understand biotic recovery in both the body and trace fossil records of the Early Triassic, almost no focus has previously been given to analyzing patterns in ecosystem engineering complexity as a result of the extinction drivers. Bioturbation is a key ecosystem engineering behavior in marine environments, as it results in changes to resource flows and the physical environment. Thus, the trace fossil record can be used to examine the effect of the end-Permian mass extinction on bioturbating ecosystem engineers. We present a dataset compiled from previously published literature to analyze burrowing ecosystem engineering behaviors through the Permian-Triassic boundary. We report two key observations: first, that there is no loss in bioturbation ecosystem engineering behaviors after the mass extinction, and second, that these persisting behaviors include deep tier, high-impact, complex ecosystem engineering. These findings suggest that while environmental conditions may have limited deeper burrowing, complex ecosystem engineering behaviors were able to persist in the Early Triassic. Furthermore, the persistence of deep tier bioirrigated three-dimensional network burrows implies that benthic biogeochemical cycling could have been maintained at pre-extinction states in some local environments, stimulating ecosystem productivity and promoting biotic recovery in the Early Triassic.


Assuntos
Organismos Aquáticos/classificação , Organismos Aquáticos/fisiologia , Biodiversidade , Evolução Biológica , Ecossistema , Extinção Biológica , Paleontologia , Animais , Fósseis , Dinâmica Populacional
6.
R Soc Open Sci ; 6(9): 190548, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31598294

RESUMO

The disappearance of the soft-bodied Ediacara biota at the Ediacaran-Cambrian boundary potentially represents the earliest mass extinction of complex life, although the precise driver(s) of this extinction remain unresolved. The 'biotic replacement' model proposes that an evolutionary radiation of metazoan ecosystem engineers in the latest Ediacaran profoundly altered marine palaeoenvironments, resulting in the extinction of Ediacara biota and setting the stage for the subsequent Cambrian Explosion. However, metazoan ecosystem engineering across the Ediacaran-Cambrian transition has yet to be quantified. Here, we test this key tenet of the biotic replacement model by characterizing the intensity of metazoan bioturbation and ecosystem engineering in trace fossil assemblages throughout the latest Ediacaran Nama Group in southern Namibia. The results illustrate a dramatic increase in both bioturbation and ecosystem engineering intensity in the latest Ediacaran, prior to the Cambrian boundary. Moreover, our analyses demonstrate that the highest-impact ecosystem engineering behaviours were present well before the onset of the Cambrian. These data provide the first support for a fundamental prediction of the biotic replacement model, and evidence for a direct link between the early evolution of ecosystem engineering and the extinction of the Ediacara biota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA