Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(8): eabq0435, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827374

RESUMO

Dysfunction of collecting lymphatic vessel pumping is associated with an array of pathologies. S-(-)-Bay K8644 (BayK), a small-molecule agonist of L-type calcium channels, improves vessel contractility ex vivo but has been left unexplored in vivo because of poor lymphatic access and risk of deleterious off-target effects. When formulated within lymph-draining nanoparticles (NPs), BayK acutely improved lymphatic vessel function, effects not seen from treatment with BayK in its free form. By preventing rapid drug access to the circulation, NP formulation also reduced BayK's dose-limiting side effects. When applied to a mouse model of lymphedema, treatment with BayK formulated in lymph-draining NPs, but not free BayK, improved pumping pressure generated by intact lymphatic vessels and tissue remodeling associated with the pathology. This work reveals the utility of a lymph-targeting NP platform to pharmacologically enhance lymphatic pumping in vivo and highlights a promising approach to treating lymphatic dysfunction.


Assuntos
Vasos Linfáticos , Camundongos , Animais , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Modelos Animais de Doenças , Pressão
2.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923272

RESUMO

The mechanisms of lymphedema development are not well understood, but emerging evidence highlights the crucial role the immune system plays in driving its progression. It is well known that lymphatic function deteriorates as lymphedema progresses; however, the connection between this progressive loss of function and the immune-driven changes that characterize the disease has not been well established. In this study, we assess changes in leukocyte populations in lymph nodes within the lymphatic drainage basin of the tissue injury site (draining lymph nodes, dLNs) using a mouse tail model of lymphedema in which a pair of draining collecting vessels are left intact. We additionally quantify lymphatic pump function using established near infrared (NIR) lymphatic imaging methods and lymph-draining nanoparticles (NPs) synthesized and employed by our team for lymphatic tissue drug delivery applications to measure lymphatic transport to and resulting NP accumulation within dLNs associated with swelling following surgery. When applied to assess the effects of the anti-inflammatory drug bestatin, which has been previously shown to be a possible treatment for lymphedema, we find lymph-draining NP accumulation within dLNs and lymphatic function to increase as lymphedema progresses, but no significant effect on leukocyte populations in dLNs or tail swelling. These results suggest that ameliorating this loss of lymphatic function is not sufficient to reverse swelling in this surgically induced disease model that better recapitulates the extent of lymphatic injury seen in human lymphedema. It also suggests that loss of lymphatic function during lymphedema may be driven by immune-mediated mechanisms coordinated in dLNs. Our work indicates that addressing both lymphatic vessel dysfunction and immune cell expansion within dLNs may be required to prevent or reverse lymphedema when partial lymphatic function is sustained.


Assuntos
Modelos Animais de Doenças , Leucina/análogos & derivados , Leucócitos/imunologia , Leucotrieno B4/antagonistas & inibidores , Linfonodos/imunologia , Vasos Linfáticos/imunologia , Linfedema/imunologia , Animais , Feminino , Cinética , Leucina/farmacologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Linfonodos/patologia , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Linfedema/tratamento farmacológico , Linfedema/metabolismo , Linfedema/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteases/farmacologia
3.
J Clin Invest ; 130(10): 5562-5575, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673288

RESUMO

Pathologic lymphatic remodeling in lymphedema evolves during periods of tissue inflammation and hypoxia through poorly defined processes. In human and mouse lymphedema, there is a significant increase of hypoxia inducible factor 1 α (HIF-1α), but a reduction of HIF-2α protein expression in lymphatic endothelial cells (LECs). We questioned whether dysregulated expression of these transcription factors contributes to disease pathogenesis and found that LEC-specific deletion of Hif2α exacerbated lymphedema pathology. Even without lymphatic vascular injury, the loss of LEC-specific Hif2α caused anatomic pathology and a functional decline in fetal and adult mice. These findings suggest that HIF-2α is an important mediator of lymphatic health. HIF-2α promoted protective phosphorylated TIE2 (p-TIE2) signaling in LECs, a process also replicated by upregulating TIE2 signaling through adenovirus-mediated angiopoietin-1 (Angpt1) gene therapy. Our study suggests that HIF-2α normally promotes healthy lymphatic homeostasis and raises the exciting possibility that restoring HIF-2α pathways in lymphedema could mitigate long-term pathology and disability.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Sistema Linfático/metabolismo , Sistema Linfático/patologia , Linfedema/metabolismo , Linfedema/patologia , Angiopoietina-1/genética , Angiopoietina-1/uso terapêutico , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sistema Linfático/embriologia , Linfedema/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Gravidez , Receptor TIE-2/metabolismo , Transdução de Sinais
4.
Nat Biomed Eng ; 4(6): 649-661, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31873209

RESUMO

Contractile activity in the lymphatic vasculature is essential for maintaining fluid balance within organs and tissues. However, the mechanisms by which collecting lymphatics adapt to changes in fluid load and how these adaptations influence lymphatic contractile activity are unknown. Here we report a model of lymphatic injury based on the ligation of one of two parallel lymphatic vessels in the hind limb of sheep and the evaluation of structural and functional changes in the intact, remodelling lymphatic vessel over a 42-day period. We show that the remodelled lymphatic vessel displayed increasing intrinsic contractile frequency, force generation and vessel compliance, as well as decreasing flow-mediated contractile inhibition via the enzyme endothelial nitric oxide synthase. A computational model of a chain of lymphatic contractile segments incorporating these adaptations predicted increases in the flow-generation capacity of the remodelled vessel at the expense of normal mitochondrial function and elevated oxidative stress within the lymphatic muscle. Our findings may inform interventions for mitigating lymphatic muscle fatigue in patients with dysfunctional lymphatics.


Assuntos
Membro Posterior/fisiologia , Vasos Linfáticos/anatomia & histologia , Vasos Linfáticos/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Membro Posterior/diagnóstico por imagem , Membro Posterior/cirurgia , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/cirurgia , Imageamento por Ressonância Magnética , Contração Muscular/fisiologia , Proteômica , Ovinos , Remodelação Vascular
5.
Sci Rep ; 9(1): 10405, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320677

RESUMO

It has been suggested that many forms of secondary lymphedema in humans are driven by a progressive loss of lymphatic pump function after an initial risk-inducing event. However, the link between pump failure and disease progression has remained elusive due to experimental challenges in the clinical setting and a lack of adequate animal models. Using a novel surgical model of lymphatic injury, we track the adaptation and functional decline of the lymphatic network in response to surgery. This model mimics the histological hallmarks of the typical mouse tail lymphedema model while leaving an intact collecting vessel for analysis of functional changes during disease progression. Lymphatic function in the intact collecting vessel negatively correlated with swelling, while a loss of pumping pressure generation remained even after resolution of swelling. By using this model to study the role of obesity in lymphedema development, we show that obesity exacerbates acquired lymphatic pump failure following lymphatic injury, suggesting one mechanism through which obesity may worsen lymphedema. This lymphatic injury model will allow for future studies investigating the molecular mechanisms leading to lymphedema development.


Assuntos
Vasos Linfáticos/patologia , Linfedema/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/patologia
6.
Sci Transl Med ; 9(389)2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28490670

RESUMO

Acquired lymphedema is a cancer sequela and a global health problem currently lacking pharmacologic therapy. We have previously demonstrated that ketoprofen, an anti-inflammatory agent with dual 5-lipoxygenase and cyclooxygenase inhibitory properties, effectively reverses histopathology in experimental lymphedema. We show that the therapeutic benefit of ketoprofen is specifically attributable to its inhibition of the 5-lipoxygenase metabolite leukotriene B4 (LTB4). LTB4 antagonism reversed edema, improved lymphatic function, and restored lymphatic architecture in the murine tail model of lymphedema. In vitro, LTB4 was functionally bimodal: Lower LTB4 concentrations promoted human lymphatic endothelial cell sprouting and growth, but higher concentrations inhibited lymphangiogenesis and induced apoptosis. During lymphedema progression, lymphatic fluid LTB4 concentrations rose from initial prolymphangiogenic concentrations into an antilymphangiogenic range. LTB4 biosynthesis was similarly elevated in lymphedema patients. Low concentrations of LTB4 stimulated, whereas high concentrations of LTB4 inhibited, vascular endothelial growth factor receptor 3 and Notch pathways in cultured human lymphatic endothelial cells. Lymphatic-specific Notch1-/- mice were refractory to the beneficial effects of LTB4 antagonism, suggesting that LTB4 suppression of Notch signaling is an important mechanism in disease maintenance. In summary, we found that LTB4 was harmful to lymphatic repair at the concentrations observed in established disease. Our findings suggest that LTB4 is a promising drug target for the treatment of acquired lymphedema.


Assuntos
Leucotrieno B4/antagonistas & inibidores , Linfedema/tratamento farmacológico , Animais , Anti-Inflamatórios/uso terapêutico , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Cetoprofeno/uso terapêutico , Leucotrieno B4/metabolismo , Linfedema/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA