Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 34: 102052, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38028201

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive single-stranded RNA virus, engages in complex interactions with host cell proteins throughout its life cycle. While these interactions enable the host to recognize and inhibit viral replication, they also facilitate essential viral processes such as transcription, translation, and replication. Many aspects of these virus-host interactions remain poorly understood. Here, we employed the catRAPID algorithm and utilized the RNA-protein interaction detection coupled with mass spectrometry technology to predict and validate the host proteins that specifically bind to the highly structured 5' and 3' terminal regions of the SARS-CoV-2 RNA. Among the interactions identified, we prioritized pseudouridine synthase PUS7, which binds to both ends of the viral RNA. Using nanopore direct RNA sequencing, we discovered that the viral RNA undergoes extensive post-transcriptional modifications. Modified consensus regions for PUS7 were identified at both terminal regions of the SARS-CoV-2 RNA, including one in the viral transcription regulatory sequence leader. Collectively, our findings offer insights into host protein interactions with the SARS-CoV-2 UTRs and highlight the likely significance of pseudouridine synthases and other post-transcriptional modifications in the viral life cycle. This new knowledge enhances our understanding of virus-host dynamics and could inform the development of targeted therapeutic strategies.

3.
J Med Virol ; 95(3): e28643, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890648

RESUMO

Since early May 2022, some monkeypox virus (MPXV) infections have been reported from countries where the disease is not endemic. Within 2 months, the number of patients has increased extensively, becoming the most considerable MPXV outbreak described. Smallpox vaccines demonstrated high efficacy against MPXVs in the past and are considered a crucial outbreak control measure. However, viruses isolated during the current outbreak carry distinct genetic variations, and the cross-neutralizing capability of antibodies remains to be assessed. Here we report that serum antibodies elicited by first-generation smallpox vaccines can neutralize the current MPXV more than 40 years after vaccine administration.


Assuntos
Mpox , Vacina Antivariólica , Varíola , Humanos , Monkeypox virus , Mpox/epidemiologia , Mpox/prevenção & controle , Vacina Antivariólica/genética , Vacinação
4.
Microorganisms ; 11(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36838279

RESUMO

The SARS-CoV-2 protease (3CLpro) is one of the key targets for the development of efficacious drugs for COVID-19 treatment due to its essential role in the life cycle of the virus and exhibits high conservation among coronaviruses. Recent studies have shown that flavonoids, which are small natural molecules, have antiviral activity against coronaviruses (CoVs), including SARS-CoV-2. In this study, we identified the docking sites and binding affinity of several natural compounds, similar to flavonoids, and investigated their inhibitory activity towards 3CLpro enzymatic activity. The selected compounds were then tested in vitro for their cytotoxicity, for antiviral activity against SARS-CoV-2, and the replication of other coronaviruses in different cell lines. Our results showed that Baicalein (100 µg/mL) exerted strong 3CLpro activity inhibition (>90%), whereas Hispidulin and Morin displayed partial inhibition. Moreover, Baicalein, up to 25 µg/mL, hindered >50% of SARS-CoV-2 replication in Vero E6 cultures. Lastly, Baicalein displayed antiviral activity against alphacoronavirus (Feline-CoV) and betacoronavirus (Bovine-CoV and HCoV-OC43) in the cell lines. Our study confirmed the antiviral activity of Baicalein against SARS-CoV-2 and demonstrated clear evidence of its pan-coronaviral activity.

5.
Front Immunol ; 14: 1104423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798134

RESUMO

Human Immunodeficiency Virus (HIV) is still one of the major global health issues, and despite significant efforts that have been put into studying the pathogenesis of HIV infection, several aspects need to be clarified, including how innate immunity acts in different anatomical compartments. Given the nature of HIV as a sexually transmitted disease, one of the aspects that demands particular attention is the mucosal innate immune response. Given this scenario, we focused our attention on the interplay between HIV and mucosal innate response: the different mucosae act as a physical barrier, whose integrity can be compromised by the infection, and the virus-cell interaction induces the innate immune response. In addition, we explored the role of the mucosal microbiota in facilitating or preventing HIV infection and highlighted how its changes could influence the development of several opportunistic infections. Although recent progress, a proper characterization of mucosal innate immune response and microbiota is still missing, and further studies are needed to understand how they can be helpful for the formulation of an effective vaccine.


Assuntos
Infecções por HIV , Infecções Sexualmente Transmissíveis , Humanos , HIV , Mucosa , Imunidade Inata
6.
Biomedicines ; 10(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36140168

RESUMO

Both emerging viruses and well-known viral pathogens endowed with neurotropism can either directly impair neuronal functions or induce physio-pathological changes by diffusing from the periphery through neurosensory-epithelial connections. However, developing a reliable and reproducible in vitro system modeling the connectivity between the different human sensory neurons and peripheral tissues is still a challenge and precludes the deepest comprehension of viral latency and reactivation at the cellular and molecular levels. This study shows a stable topographic neurosensory-epithelial connection on a chip using human stem cell-derived dorsal root ganglia (DRG) organoids. Bulk and single-cell transcriptomics showed that different combinations of key receptors for herpes simplex virus 1 (HSV-1) are expressed by each sensory neuronal cell type. This neuronal-epithelial circuitry enabled a detailed analysis of HSV infectivity, faithfully modeling its dynamics and cell type specificity. The reconstitution of an organized connectivity between human sensory neurons and keratinocytes into microfluidic chips provides a powerful in vitro platform for modeling viral latency and reactivation of human viral pathogens.

7.
Viruses ; 14(6)2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35746703

RESUMO

(1) Background: Our aim is the evaluation of the neutralizing activity of BNT162b2 mRNA vaccine-induced antibodies in different in vitro cellular models, as this still represents one of the surrogates of protection against SARS-CoV-2 viral variants. (2) Methods: The entry mechanisms of SARS-CoV-2 in three cell lines (Vero E6, Vero E6/TMPRSS2 and Calu-3) were evaluated with both pseudoviruses and whole virus particles. The neutralizing capability of sera collected from vaccinated subjects was characterized through cytopathic effects and Real-Time RT PCR. (3) Results: In contrast to Vero E6 and Vero E6/TMPRSS2, Calu-3 allowed the evaluation of both viral entry mechanisms, resembling what occurs during natural infection. The choice of an appropriate cellular model can decisively influence the determination of the neutralizing activity of antibodies against SARS-CoV-2 variants. Indeed, the lack of correlation between neutralizing data in Calu-3 and Vero E6 demonstrated that testing the antibody inhibitory activity by using a single cell model possibly results in an inaccurate characterization. (4) Conclusions: Cellular systems allowing only one of the two viral entry pathways may not fully reflect the neutralizing activity of vaccine-induced antibodies moving increasingly further away from possible correlates of protection from SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , Chlorocebus aethiops , Humanos , Vacinas Sintéticas , Células Vero , Vacinas de mRNA
8.
Vaccines (Basel) ; 10(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35632557

RESUMO

The purpose of this study was to evaluate the efficacy and safety of the Moderna-1273 mRNA vaccine for SARS-CoV-2 in patients with immune-mediated diseases under different treatments. Anti-trimeric spike protein antibodies were tested in 287 patients with rheumatic or autoimmune diseases (10% receiving mycophenolate mofetil, 15% low-dose glucocorticoids, 21% methotrexate, and 58% biologic/targeted synthetic drugs) at baseline and in 219 (76%) 4 weeks after the second Moderna-1273 mRNA vaccine dose. Family members or caretakers were enrolled as the controls. The neutralizing serum activity against SARS-CoV-2-G614, alpha, and beta variants in vitro and the cytotoxic T cell response to SARS-CoV-2 peptides were determined in a subgroup of patients and controls. Anti-SARS-CoV-2 antibody development, i.e., seroconversion, was observed in 69% of the mycophenolate-treated patients compared to 100% of both the patients taking other treatments and the controls (p < 0.0001). A dose-dependent impairment of the humoral response was observed in the mycophenolate-treated patients. A daily dose of >1 g at vaccination was a significant risk factor for non-seroconversion (ROC AUC 0.89, 95% CI 0.80−98, p < 0.0001). Moreover, in the seroconverted patients, a daily dose of >1 g of mycophenolate was associated with significantly lower anti-SARS-CoV-2 antibody titers, showing slightly reduced neutralizing serum activity but a comparable cytotoxic response compared to other immunosuppressants. In non-seroconverted patients treated with mycophenolate at a daily dose of >1 g, the cytotoxic activity elicited by viral peptides was also impaired. Mycophenolate treatment affects the Moderna-1273 mRNA vaccine immunogenicity in a dose-dependent manner, independent of rheumatological disease.

9.
Nucleic Acids Res ; 50(6): 3475-3489, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35244721

RESUMO

The SARS-CoV-2 virus has a complex transcriptome characterised by multiple, nested subgenomic RNAsused to express structural and accessory proteins. Long-read sequencing technologies such as nanopore direct RNA sequencing can recover full-length transcripts, greatly simplifying the assembly of structurally complex RNAs. However, these techniques do not detect the 5' cap, thus preventing reliable identification and quantification of full-length, coding transcript models. Here we used Nanopore ReCappable Sequencing (NRCeq), a new technique that can identify capped full-length RNAs, to assemble a complete annotation of SARS-CoV-2 sgRNAs and annotate the location of capping sites across the viral genome. We obtained robust estimates of sgRNA expression across cell lines and viral isolates and identified novel canonical and non-canonical sgRNAs, including one that uses a previously un-annotated leader-to-body junction site. The data generated in this work constitute a useful resource for the scientific community and provide important insights into the mechanisms that regulate the transcription of SARS-CoV-2 sgRNAs.


Assuntos
COVID-19 , Nanoporos , RNA Guia de Cinetoplastídeos/química , COVID-19/genética , Genoma Viral/genética , Humanos , Capuzes de RNA , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética
10.
J Thromb Haemost ; 20(2): 434-448, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34710269

RESUMO

BACKGROUND: Platelet activation and thrombotic events characterizes COVID-19. OBJECTIVES: To characterize platelet activation and determine if SARS-CoV-2 induces platelet activation. PATIENTS/METHODS: We investigated platelet activation in 119 COVID-19 patients at admission in a university hospital in Milan, Italy, between March 18 and May 5, 2020. Sixty-nine subjects (36 healthy donors, 26 patients with coronary artery disease, coronary artery disease, and seven patients with sepsis) served as controls. RESULTS: COVID-19 patients had activated platelets, as assessed by the expression and distribution of HMGB1 and von Willebrand factor, and by the accumulation of platelet-derived (plt) extracellular vesicles (EVs) and HMGB1+ plt-EVs in the plasma. P-selectin upregulation was not detectable on the platelet surface in a fraction of patients (55%) and the concentration of soluble P-selectin in the plasma was conversely increased. The plasma concentration of HMGB1+ plt-EVs of patients at hospital admission remained in a multivariate analysis an independent predictor of the clinical outcome, as assessed using a 6-point ordinal scale (from 1 = discharged to 6 = death). Platelets interacting in vitro with SARS-CoV-2 underwent activation, which was replicated using SARS-CoV-2 pseudo-viral particles and purified recombinant SARS-CoV-2 spike protein S1 subunits. Human platelets express CD147, a putative coreceptor for SARS-CoV-2, and Spike-dependent platelet activation, aggregation and granule release, release of soluble P-selectin and HMGB1+ plt-EVs abated in the presence of anti-CD147 antibodies. CONCLUSIONS: Hence, an early and intense platelet activation, which is reproduced by stimulating platelets in vitro with SARS-CoV-2, characterizes COVID-19 and could contribute to the inflammatory and hemostatic manifestations of the disease.


Assuntos
COVID-19 , SARS-CoV-2 , Plaquetas , Humanos , Ativação Plaquetária , Glicoproteína da Espícula de Coronavírus
11.
Mol Ther ; 30(1): 311-326, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34547465

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax-a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)-induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Imunização/métodos , Modelos Animais , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/genética , COVID-19/virologia , Feminino , Furões , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Domínios Proteicos , Ratos Sprague-Dawley
12.
Vaccines (Basel) ; 9(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34835288

RESUMO

BACKGROUND: Studies reporting the long-term humoral response after receiving the BNT162b2 COVID-19 vaccine are important to drive future vaccination strategies. Yet, available literature is scarce. Covidiagnostix is a multicenter study designed to assess the antibody response in >1000 healthcare professionals (HCPs) who received the BNT162b2 vaccine. METHODS: Serum was tested at time-0 (T0), before the first dose, T1, T2, and T3, respectively, 21, 42, and 180 days after T0. Antibodies against the SARS-CoV-2 nucleocapsid-protein were measured to assess SARS-CoV-2 infections, whereas antibodies against the receptor-binding domain of the spike protein were measured to assess the vaccine response. Neutralization activity against the D614G, B.1.1.7, and B.1.351 variants were also analyzed. RESULTS: Six months post-vaccination HCPs showed an antibody titer decrease of approximately 70%, yet, the titer was still one order of magnitude higher than that of seropositive individuals before vaccination. We identified 12 post-vaccination infected HCPs. None showed severe symptoms. Interestingly, most of them showed titers at T2 above the neutralization thresholds obtained from the neutralization activity experiments. CONCLUSION: Vaccination induces a humoral response which is well detectable even six months post-vaccination. Vaccination prevents severe COVID-19 cases, yet post-vaccination infection is possible even in the presence of a high anti-S serum antibody titer.

13.
Comput Struct Biotechnol J ; 19: 6140-6156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745450

RESUMO

We exploited a multi-scale microscopy imaging toolbox to address some major issues related to SARS-CoV-2 interactions with host cells. Our approach harnesses both conventional and super-resolution fluorescence microscopy and easily matches the spatial scale of single-virus/cell checkpoints. After its validation through the characterization of infected cells and virus morphology, we leveraged this toolbox to reveal subtle issues related to the entry phase of SARS-CoV-2 variants in Vero E6 cells. Our results show that in Vero E6 cells the B.1.1.7 strain (aka Alpha Variant of Concern) is associated with much faster kinetics of endocytic uptake compared to its ancestor B.1.177. Given the cell-entry scenario dominated by the endosomal "late pathway", the faster internalization of B.1.1.7 could be directly related to the N501Y mutation in the S protein, which is known to strengthen the binding of Spike receptor binding domain with ACE2. Remarkably, we also directly observed the central role of clathrin as a mediator of endocytosis in the late pathway of entry. In keeping with the clathrin-mediated endocytosis, we highlighted the non-raft membrane localization of ACE2. Overall, we believe that our fluorescence microscopy-based approach represents a fertile strategy to investigate the molecular features of SARS-CoV-2 interactions with cells.

15.
Cell ; 184(19): 4953-4968.e16, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34492226

RESUMO

Severe coronavirus disease 2019 (COVID-19) is characterized by overproduction of immune mediators, but the role of interferons (IFNs) of the type I (IFN-I) or type III (IFN-III) families remains debated. We scrutinized the production of IFNs along the respiratory tract of COVID-19 patients and found that high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity. Production of specific IFN-III, but not IFN-I, members denotes patients with a mild pathology and efficiently drives the transcription of genes that protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In contrast, compared to subjects with other infectious or noninfectious lung pathologies, IFNs are overrepresented in the lower airways of patients with severe COVID-19 that exhibit gene pathways associated with increased apoptosis and decreased proliferation. Our data demonstrate a dynamic production of IFNs in SARS-CoV-2-infected patients and show IFNs play opposing roles at distinct anatomical sites.


Assuntos
COVID-19/patologia , Interferons/metabolismo , Sistema Respiratório/virologia , Índice de Gravidade de Doença , Fatores Etários , Envelhecimento/patologia , COVID-19/genética , COVID-19/imunologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Humanos , Interferons/genética , Leucócitos/patologia , Leucócitos/virologia , Pulmão/patologia , Pulmão/virologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Carga Viral
16.
PLoS Pathog ; 17(9): e1009878, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34473805

RESUMO

SARS-CoV-2 fine-tunes the interferon (IFN)-induced antiviral responses, which play a key role in preventing coronavirus disease 2019 (COVID-19) progression. Indeed, critically ill patients show an impaired type I IFN response accompanied by elevated inflammatory cytokine and chemokine levels, responsible for cell and tissue damage and associated multi-organ failure. Here, the early interaction between SARS-CoV-2 and immune cells was investigated by interrogating an in vitro human peripheral blood mononuclear cell (PBMC)-based experimental model. We found that, even in absence of a productive viral replication, the virus mediates a vigorous TLR7/8-dependent production of both type I and III IFNs and inflammatory cytokines and chemokines, known to contribute to the cytokine storm observed in COVID-19. Interestingly, we observed how virus-induced type I IFN secreted by PBMC enhances anti-viral response in infected lung epithelial cells, thus, inhibiting viral replication. This type I IFN was released by plasmacytoid dendritic cells (pDC) via an ACE-2-indipendent but Neuropilin-1-dependent mechanism. Viral sensing regulates pDC phenotype by inducing cell surface expression of PD-L1 marker, a feature of type I IFN producing cells. Coherently to what observed in vitro, asymptomatic SARS-CoV-2 infected subjects displayed a similar pDC phenotype associated to a very high serum type I IFN level and induction of anti-viral IFN-stimulated genes in PBMC. Conversely, hospitalized patients with severe COVID-19 display very low frequency of circulating pDC with an inflammatory phenotype and high levels of chemokines and pro-inflammatory cytokines in serum. This study further shed light on the early events resulting from the interaction between SARS-CoV-2 and immune cells occurring in vitro and confirmed ex vivo. These observations can improve our understanding on the contribution of pDC/type I IFN axis in the regulation of the anti-viral state in asymptomatic and severe COVID-19 patients.


Assuntos
COVID-19/imunologia , Células Dendríticas/classificação , Interferon Tipo I/metabolismo , SARS-CoV-2/imunologia , Adulto , Idoso de 80 Anos ou mais , Infecções Assintomáticas , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/virologia , Células Epiteliais/citologia , Feminino , Hospitalização , Humanos , Interferon Tipo I/imunologia , Pulmão/citologia , Masculino , Pessoa de Meia-Idade , Neuropilina-1/metabolismo , Fenótipo , Índice de Gravidade de Doença , Receptor 7 Toll-Like/metabolismo
17.
Viruses ; 13(8)2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34452380

RESUMO

SARS-CoV-2 spike is evolving to maximize transmissibility and evade the humoral response. The massive genomic sequencing of SARS-CoV-2 isolates has led to the identification of single-point mutations and deletions, often having the recurrence of hotspots, associated with advantageous phenotypes. We report the isolation and molecular characterization of a SARS-CoV-2 strain, belonging to a lineage (C.36) not previously associated with concerning traits, which shows decreased susceptibility to vaccine sera neutralization.


Assuntos
COVID-19/virologia , SARS-CoV-2/isolamento & purificação , Anticorpos Antivirais/imunologia , Humanos , Itália , Mutação , Testes de Neutralização , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
18.
Clin Chim Acta ; 522: 144-151, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34425105

RESUMO

BACKGROUND AND AIMS: Vaccines, to limit SARS-CoV-2 infection, were produced and reliable assays are needed for their evaluation. The WHO produced an International-Standard (WHO-IS) to facilitate the standardization/comparison of serological methods. The WHO-IS, produced in limited amount, was never tested for reproducibility. This study aims at developing a reproducible and accessible working standard (WS) to complement the WHO-IS. MATERIALS AND METHODS: Sera from vaccinated individuals were used to produce the WSs. The WHO-IS, the WSs and single serum samples (n = 48) were tested on 6 quantitative serological devices. Neutralization assays were performed for the 48 samples and compared with their antibody titers. RESULTS: The WS carry an antibody titer 20-fold higher than the WHO-IS. It was reproducible, showed both good linearity and insignificant intra- and inter-laboratory variability. However, the WSs behave differently from the WHO-IS. Analysis of the 48 samples showed that single correlation factors are not sufficient to harmonize results from different assays. Yet, all the devices predict neutralization activity based on the antibody titer. CONCLUSIONS: A reproducible and highly concentrated WS, specific for IgG against SARS-CoV-2 Spike-glycoprotein was produced. Such characteristics make it particularly suited for the harmonization of commercially available assays and the consequent evaluation of post-vaccinated individuals.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Testes de Neutralização , Reprodutibilidade dos Testes
19.
Clin Microbiol Rev ; 34(3)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33789928

RESUMO

Several viruses target the human respiratory tract, causing different clinical manifestations spanning from mild upper airway involvement to life-threatening acute respiratory distress syndrome (ARDS). As dramatically evident in the ongoing SARS-CoV-2 pandemic, the clinical picture is not always easily predictable due to the combined effect of direct viral and indirect patient-specific immune-mediated damage. In this review, we discuss the main RNA (orthomyxoviruses, paramyxoviruses, and coronaviruses) and DNA (adenoviruses, herpesviruses, and bocaviruses) viruses with respiratory tropism and their mechanisms of direct and indirect cell damage. We analyze the thin line existing between a protective immune response, capable of limiting viral replication, and an unbalanced, dysregulated immune activation often leading to the most severe complication. Our comprehension of the molecular mechanisms involved is increasing and this should pave the way for the development and clinical use of new tailored immune-based antiviral strategies.


Assuntos
Vírus de DNA , Lesão Pulmonar , Vírus de RNA , Infecções Respiratórias , Viroses , Adulto , Idoso , Antivirais/uso terapêutico , COVID-19 , Criança , Pré-Escolar , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Lactente , Recém-Nascido , Interferons/uso terapêutico , Pulmão/imunologia , Pulmão/virologia , Lesão Pulmonar/diagnóstico , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/imunologia , Lesão Pulmonar/virologia , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2
20.
Emerg Microbes Infect ; 10(1): 206-210, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33399524

RESUMO

The extremely rapid spread of the SARS-CoV-2 has already resulted in more than 1 million reported deaths of coronavirus disease 2019 (COVID-19). The ability of infectious particles to persist on environmental surfaces is potentially considered a factor for viral spreading. Therefore, limiting viral diffusion in public environments should be achieved with correct disinfection of objects, tissues, and clothes. This study proves how two widespread disinfection systems, short-wavelength ultraviolet light (UV-C) and ozone (O3), are active in vitro on different commonly used materials. The development of devices equipped with UV-C, or ozone generators, may prevent the virus from spreading in public places.


Assuntos
COVID-19/prevenção & controle , Desinfecção/métodos , Ozônio/farmacologia , Raios Ultravioleta , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...