Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(7): e0016324, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38757955

RESUMO

Post-market surveillance of test performance is a critical function of public health agencies and clinical researchers that ensures tests maintaining diagnostic characteristics following their regulatory approval. Changes in product quality, manufacturing processes over time, or the evolution of new variants may impact product performance. During the COVID-19 pandemic, a plethora of point-of-care tests (POCTs) was released onto the Canadian market. This study evaluated the performance characteristics of several of the most widely distributed POCTs in Canada, including four rapid antigen tests (Abbott Panbio, BTNX Rapid Response, SD Biosensor, and Quidel QuickVue) and two molecular tests (Abbott ID NOW and Lucira Check IT). All tests were challenged with 149 SARS-CoV-2 clinical positives, including multiple variants up to and including Omicron XBB.1.5, as well as 29 clinical negatives. Results were stratified based on whether the isolate was Omicron or pre-Omicron as well as by reverse transcriptase quantitative PCR Ct value. The test performance of each POCT was consistent with the manufacturers' claims and showed no significant decline in clinical performance against any of the variants tested. These findings provide continued confidence in the results of these POCTs as they continue to be used to support decentralized COVID-19 testing. This work demonstrates the essential role of post-market surveillance in ensuring reliability in diagnostic tools.IMPORTANCEPost-market surveillance of diagnostic test performance is critical to ensure their reliability after regulatory approval. This is especially critical in the context of the COVID-19 pandemic as the use of point-of-care tests (POCTs) became widespread. Our study focused on four rapid antigen tests (Abbott Panbio, BTNX Rapid Response, SD Biosensor, and Quidel QuickVue) and two molecular tests (Abbott ID NOW and Lucira Check IT) that were widely distributed across Canada, assessing their performance using many SARS-CoV-2 variants, including up to Omicron subvariant XBB.1.5. Overall, we found no significant difference in performance against any variant, reinforcing confidence in their use. As concerns in test efficacy have been raised by news outlets, particularly regarding the BTNX Rapid Response, this work is even more timely and crucial. Our research offers insights into the performance of widely used COVID-19 POCTs but also highlights the necessity for post-market surveillance.


Assuntos
COVID-19 , Testes Imediatos , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/virologia , Canadá/epidemiologia , Sensibilidade e Especificidade , Teste para COVID-19/métodos , Vigilância de Produtos Comercializados
2.
Sci Rep ; 10(1): 12773, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728195

RESUMO

RNA interference (RNAi) technologies have recently been developed to control a growing number of agronomically significant fungal phytopathogens, including the white mold pathogen, Sclerotinia sclerotiorum. Exposure of this fungus to exogenous double-stranded RNA (dsRNA) results in potent RNAi-mediated knockdown of target genes' transcripts, but it is unclear how the dsRNA can enter the fungal cells. In nematodes, specialized dsRNA transport proteins such as SID-1 facilitate dsRNA uptake, but for many other eukaryotes in which the dsRNA uptake mechanisms have been examined, endocytosis appears to mediate the uptake process. In this study, using live cell imaging, transgenic fungal cultures and endocytic inhibitors, we determined that the uptake mechanism in S. sclerotiorum occurs through clathrin-mediated endocytosis. RNAi-mediated knockdown of several clathrin-mediated endocytic genes' transcripts confirmed the involvement of this cellular uptake process in facilitating RNAi in this fungus. Understanding the mode of dsRNA entry into the fungus will prove useful in designing and optimizing future dsRNA-based control methods and in anticipating possible mechanisms by which phytopathogens may develop resistance to this novel category of fungicides.


Assuntos
Ascomicetos/metabolismo , Clatrina/química , Endocitose , Interferência de RNA , RNA de Cadeia Dupla/química , Animais , Transporte Biológico , Células CHO , Cricetulus , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Transgenes
3.
Viruses ; 12(2)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075072

RESUMO

Human adenovirus infection is driven by Early region 1A (E1A) proteins, which are the first proteins expressed following the delivery of the viral genome to the cellular nucleus. E1A is responsible for reprogramming the infected cell to support virus replication alongside the activation of expression of all viral transcriptional units during the course of the infection. Although E1A has been extensively studied, most of these studies have focused on understanding the conserved region functions outside of a full infection. Here, we investigated the effects of small deletions in E1A exon 1 on the viral replicative cycle. Almost all deletions were found to have a negative impact on viral replication with the exception of one deletion found in the mutant dl1106, which replicated better than the wild-type E1A expressing dl309. In addition to growth, we assessed the virus mutants for genome replication, induction of the cytopathic effect, gene and protein expression, sub-cellular localization of E1A mutant proteins, induction of cellular S-phase, and activation of S-phase specific cellular genes. Importantly, our study found that virus replication is likely limited by host-specific factors, rather than specific viral aspects such as the ability to replicate genomes or express late proteins, after a certain level of these has been expressed. Furthermore, we show that mutants outside of the conserved regions have significant influence on viral fitness. Overall, our study is the first comprehensive evaluation of the dl1100 series of exon 1 E1A deletion mutants in viral fitness and provides important insights into the contribution that E1A makes to viral replication in normal human cells.


Assuntos
Proteínas E1A de Adenovirus/genética , Adenovírus Humanos/genética , Éxons , Deleção de Sequência , Replicação Viral , Adenovírus Humanos/fisiologia , Sequência de Bases , Linhagem Celular , Humanos
4.
Appl Environ Microbiol ; 85(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902859

RESUMO

The purpose of this study was to create single-copy gene expression systems for use in genomic manipulations of multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates of Acinetobacter baumannii In this study, mini-Tn7 vectors with zeocin and apramycin selection markers were created by cloning the ble and aac(3)-IV genes, respectively, enabling either inducible gene expression (pUC18T-mini-Tn7T-Zeo-LAC and pUC18T-mini-Tn7T-Apr-LAC) or expression from native or constitutive promoters (pUC18T-mini-Tn7T-Zeo and pUC18T-mini-Tn7T-Apr). The selection markers of these plasmids are contained within a Flp recombinase target (FRT) cassette, which can be used to obtain unmarked mini-Tn7 insertions upon introduction of a source of Flp recombinase. To this end, site-specific excision vectors pFLP2A and pFLP2Z (containing apramycin and zeocin selection markers, respectively) were created in this study as an accessory to the mini-Tn7 vectors described above. Combinations of these novel mini-Tn7 plasmids and their compatible pFLP2Z or pFLP2A accessory plasmid were used to generate unmarked insertions in MDR clinical isolates of A. baumannii In addition, several fluorescent markers were cloned and inserted into MDR and XDR clinical isolates of A. baumannii via these apramycin and zeocin mini-Tn7 constructs to demonstrate their application.IMPORTANCEAcinetobacter baumannii is a high-priority pathogen for which research on mechanisms of resistance and virulence is a critical need. Commonly used antibiotic selection markers are not suitable for use in MDR and XDR isolates of A. baumannii due to the high antibiotic resistance of these isolates, which poses a barrier to the study of this pathogen. This study demonstrates the practical potential of using apramycin and zeocin mini-Tn7- and Flp recombinase-encoded constructs to carry out genomic manipulations in clinical isolates of A. baumannii displaying MDR and XDR phenotypes.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana Múltipla/genética , Acinetobacter baumannii/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Bleomicina/farmacologia , Clonagem Molecular , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Vetores Genéticos , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Regiões Promotoras Genéticas , Alinhamento de Sequência , Transformação Bacteriana
5.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842325

RESUMO

Human adenovirus expresses several early proteins that control various aspects of the viral replication program, including an orchestrated expression of viral genes. Two of the earliest viral transcriptional units activated after viral genome entry into the host cell nucleus are the E1 and E4 units, which each express a variety of proteins. Chief among these are the E1A proteins that function to reprogram the host cell and activate transcription of all other viral genes. The E4 gene encodes multiple proteins, including E4orf3, which functions to disrupt cellular antiviral defenses, including the DNA damage response pathway and activation of antiviral genes. Here we report that E1A directly interacts with E4orf3 via the conserved N terminus of E1A to regulate the expression of viral genes. We show that E4orf3 indiscriminately drives high nucleosomal density of viral genomes, which is restrictive to viral gene expression and which E1A overcomes via a direct interaction with E4orf3. We also show that during infection E1A colocalizes with E4orf3 to nuclear tracks that are associated with heterochromatin formation. The inability of E1A to interact with E4orf3 has a significant negative impact on overall viral replication, the ability of the virus to reprogram the host cell, and the levels of viral gene expression. Together these results show that E1A and E4orf3 work together to fine-tune the viral replication program during the course of infection and highlight a novel mechanism that regulates viral gene expression.IMPORTANCE To successfully replicate, human adenovirus needs to carry out a rapid yet ordered transcriptional program that executes and drives viral replication. Early in infection, the viral E1A proteins are the key activators and regulators of viral transcription. Here we report, for the first time, that E1A works together with E4orf3 to perfect the viral transcriptional program and identify a novel mechanism by which the virus can adjust viral gene expression by modifying its genome's nucleosomal organization via cooperation between E1A and E4orf3.


Assuntos
Proteínas E1A de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/metabolismo , Cromatina/metabolismo , Células A549 , Adenoviridae/genética , Infecções por Adenoviridae/virologia , Proteínas E1A de Adenovirus/fisiologia , Proteínas E4 de Adenovirus/fisiologia , Adenovírus Humanos/fisiologia , Linhagem Celular , Núcleo Celular/virologia , Cromatina/virologia , Citoplasma/metabolismo , Regulação Viral da Expressão Gênica/genética , Regulação Viral da Expressão Gênica/fisiologia , Genes Virais , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Fatores de Transcrição/metabolismo , Replicação Viral
6.
PLoS One ; 14(1): e0211192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30677073

RESUMO

Adenovirus executes a finely tuned transcriptional program upon infection of a cell. To better understand the temporal dynamics of the viral transcriptional program we performed highly sensitive digital PCR on samples extracted from arrested human lung fibroblasts infected with human adenovirus 5 strain dl309. We show that the first transcript made from viral genomes is the virus associated non-coding RNA, in particular we detected abundant levels of virus associated RNA II four hours after infection. Activation of E1 and E4 occurred nearly simultaneously later in infection, followed by other early genes as well as late genes. Our study determined that genomes begin to replicate between 29 and 30 hours after infection. This study provides a comprehensive view of viral mRNA steady-state kinetics in arrested human cells using digital PCR.


Assuntos
Adenovírus Humanos/genética , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Proteínas E1 de Adenovirus/genética , Proteínas E1 de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/genética , Proteínas E4 de Adenovirus/metabolismo , Proteínas Precoces de Adenovirus/genética , Proteínas Precoces de Adenovirus/metabolismo , Expressão Gênica , Genoma Viral , Humanos , Pulmão/patologia , RNA Viral/análise , RNA Viral/metabolismo , Fatores de Tempo , Ativação Transcricional , Replicação Viral
7.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29743362

RESUMO

Far-upstream element (FUSE) binding protein 1 (FUBP1) was originally identified as a regulator of the oncogene c-Myc via binding to the FUSE within the c-Myc promoter and activating the expression of the gene. Recent studies have identified FUBP1 as a regulator of transcription, translation, and splicing via its DNA and RNA binding activities. Here we report the identification of FUBP1 as a novel binding partner of E1A. FUBP1 binds directly to E1A via the N terminus (residues 1 to 82) and conserved region 3 (residues 139 to 204) of adenovirus 5 E1A. The depletion of FUBP1 via short interfering RNAs (siRNA) reduces virus growth and drives the upregulation of the cellular stress response by activating the expression of p53-regulated genes. During infection, FUBP1 is relocalized within the nucleus, and it is recruited to viral promoters together with E1A while at the same time being lost from the FUSE upstream of the c-Myc promoter. The depletion of FUBP1 affects viral and cellular gene expression. Importantly, in FUBP1-depleted cells, p53-responsive genes are upregulated, p53 occupancy on target promoters is enhanced, and histone H3 lysine 9 is hyperacetylated. This is likely due to the loss of the FUBP1-mediated suppression of p53 DNA binding. We also observed that E1A stabilizes the FUBP1-p53 complex, preventing p53 promoter binding. Together, our results identify, for the first time, FUBP1 as a novel E1A binding protein that participates in aspects of viral replication and is involved in the E1A-mediated suppression of p53 function.IMPORTANCE Viral infection triggers innate cellular defense mechanisms that have evolved to block virus replication. To overcome this, viruses have counterevolved mechanisms that ensure that cellular defenses are either disarmed or not activated to guarantee successful replication. One of the key regulators of cellular stress is the tumor suppressor p53 that responds to a variety of cellular stress stimuli and safeguards the integrity of the genome. During infection, many viruses target the p53 pathway in order to deactivate it. Here we report that human adenovirus 5 coopts the cellular protein FUBP1 to prevent the activation of the p53 stress response pathway that would block viral replication. This finding adds to our understanding of p53 deactivation by adenovirus and highlights its importance in infection and innate immunity.


Assuntos
Infecções por Adenoviridae/virologia , Adenoviridae/fisiologia , Proteínas E1A de Adenovirus/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Interações Hospedeiro-Patógeno , Proteína Supressora de Tumor p53/metabolismo , Replicação Viral , Infecções por Adenoviridae/metabolismo , Proteínas E1A de Adenovirus/genética , Células Cultivadas , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas de Ligação a RNA , Ativação Transcricional , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética
8.
Viruses ; 9(12)2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257057

RESUMO

Adenovirus Early 1A proteins (E1A) are crucial for initiation of the viral life cycle after infection. The E1A gene is encoded at the left end of the viral genome and consists of two exons, the first encoding 185 amino acids in the 289 residues adenovirus 5 E1A, while the second exon encodes 104 residues. The second exon-encoded region of E1A is conserved across all E1A isoforms except for the 55 residues protein, which has a unique C-terminus due to a frame shift following splicing into the second exon. This region of E1A contributes to a variety of processes including the regulation of viral and cellular gene expression, immortalization and transformation. Here we evaluated the contributions that different regions of the second exon of E1A make to the viral life cycle using deletion mutants. The region of E1A encoded by the second exon was found to be important for overall virus growth, induction of viral and cellular gene expression, viral genome replication and deregulation of the cell cycle. Efficient viral replication was found to require exon 2 and the nuclear localization signal, as loss of either resulted in severe growth deficiency. Induction of cellular DNA synthesis was also deficient with any deletion of E1A within the C-terminus even if these deletions were outside of conserved region 4. Overall, our study provides the first comprehensive insight into the contributions of the C-terminus of E1A to the replicative fitness of human adenovirus 5 in arrested lung fibroblasts.


Assuntos
Proteínas E1A de Adenovirus/metabolismo , Adenovírus Humanos/fisiologia , Replicação Viral , Proteínas E1A de Adenovirus/genética , Adenovírus Humanos/genética , Ciclo Celular , Linhagem Celular , Éxons , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Deleção de Sequência
9.
Virology ; 500: 11-21, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27769014

RESUMO

Human adenovirus infects terminally differentiated cells and to replicate it must induce S-phase. The chief architects that drive adenovirus-infected cells into S-phase are the E1A proteins, with 5 different isoforms expressed during infection. E1A remodels the infected cell by associating with cellular factors and modulating their activity. The C-terminus of E1A is known to bind to only a handful of proteins. We have identified a novel E1A C-terminus binding protein, Ku70 (XRCC6), which was found to bind directly within the CR4 of E1A from human adenovirus type 5. Depletion of Ku70 reduced virus growth, possibly by activating the DNA damage response pathway. Ku70 was found to localize to viral replication centers and associate with the viral genome. Ku70 was also recruited to cellular cell cycle regulated promoters following viral infection. Our study has identified, for the first time, Ku70 as a novel E1A-binding protein which affects virus life cycle.


Assuntos
Infecções por Adenoviridae/metabolismo , Proteínas E1A de Adenovirus/metabolismo , Adenovírus Humanos/metabolismo , Autoantígeno Ku/metabolismo , Infecções por Adenoviridae/genética , Infecções por Adenoviridae/fisiopatologia , Infecções por Adenoviridae/virologia , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/genética , Adenovírus Humanos/química , Adenovírus Humanos/genética , Ciclo Celular , Regulação Viral da Expressão Gênica , Humanos , Autoantígeno Ku/genética , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA