Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 178(11): 1130-8, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18723436

RESUMO

RATIONALE: Lung injury after cigarette smoking is related to particle retention. Iron accumulates with the deposition of these particles. OBJECTIVES: We tested the postulate that (1) injury after smoking correlates with exposure to the particulate fraction of cigarette smoke, (2) these particles alter iron homeostasis, triggering metal accumulation, and (3) this alteration in iron homeostasis affects oxidative stress and inflammation. METHODS: Rats and human respiratory epithelial cells were exposed to cigarette smoke, filtered cigarette smoke, and cigarette smoke condensate (the particulate fraction of smoke), and indices of iron homeostasis, oxidative stress, and inflammatory injury were determined. Comparable measures were also evaluated in nonsmokers and smokers. MEASUREMENTS AND MAIN RESULTS: After exposure of rats to cigarette smoke, increased lavage concentrations of iron and ferritin, serum ferritin levels, and nonheme iron concentrations in the lung and liver tissue all increased. Lavage ascorbate concentrations were decreased, supporting an oxidative stress. After filtering of the cigarette smoke to remove particles, most of these changes were reversed. Exposure of cultured respiratory epithelial cells to cigarette smoke condensate caused a similar accumulation of iron, metal-dependent oxidative stress, and increased IL-8 release. Lavage samples in healthy smokers and smoking patients with chronic obstructive pulmonary disease revealed elevated concentrations of both iron and ferritin relative to healthy nonsmokers. Lavage ascorbate decreased with cigarette smoking. Serum iron and ferritin levels among smokers were increased, supporting systemic accumulation of this metal after cigarette smoke exposure. CONCLUSIONS: We conclude that cigarette smoke particles alter iron homeostasis, both in the lung and systemically.


Assuntos
Ferro/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Material Particulado/efeitos adversos , Fumar/efeitos adversos , Adolescente , Adulto , Animais , Líquido da Lavagem Broncoalveolar/química , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Homeostase , Humanos , Inflamação/etiologia , Lesão Pulmonar/complicações , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Ratos , Ratos Wistar , Fatores Sexuais , Adulto Jovem
2.
Respir Res ; 9: 10, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18215276

RESUMO

BACKGROUND: Lung injury caused by both inhaled dusts and infectious agents depends on increased availability of iron and metal-catalyzed oxidative stress. Because inhaled particles, such as silica, and certain infections can cause secondary pulmonary alveolar proteinosis (PAP), we tested the hypothesis that idiopathic PAP is associated with an altered iron homeostasis in the human lung. METHODS: Healthy volunteers (n = 20) and patients with idiopathic PAP (n = 20) underwent bronchoalveolar lavage and measurements were made of total protein, iron, tranferrin, transferrin receptor, lactoferrin, and ferritin. Histochemical staining for iron and ferritin was done in the cell pellets from control subjects and PAP patients, and in lung specimens of patients without cardiopulmonary disease and with PAP. Lavage concentrations of urate, glutathione, and ascorbate were also measured as indices of oxidative stress. RESULTS: Lavage concentrations of iron, transferrin, transferrin receptor, lactoferrin, and ferritin were significantly elevated in PAP patients relative to healthy volunteers. The cells of PAP patients had accumulated significant iron and ferritin, as well as considerable amounts of extracellular ferritin. Immunohistochemistry for ferritin in lung tissue revealed comparable amounts of this metal-storage protein in the lower respiratory tract of PAP patients both intracellularly and extracellularly. Lavage concentrations of ascorbate, glutathione, and urate were significantly lower in the lavage fluid of the PAP patients. CONCLUSION: Iron homeostasis is altered in the lungs of patients with idiopathic PAP, as large amounts of catalytically-active iron and low molecular weight anti-oxidant depletion are present. These findings suggest a metal-catalyzed oxidative stress in the maintenance of this disease.


Assuntos
Homeostase , Ferro/metabolismo , Estresse Oxidativo , Proteinose Alveolar Pulmonar/metabolismo , Líquido da Lavagem Broncoalveolar/química , Estudos de Casos e Controles , Ferritinas/metabolismo , Humanos , Lactoferrina/metabolismo , Pulmão/metabolismo , Proteínas/metabolismo , Receptores da Transferrina/metabolismo , Transferrina/metabolismo
3.
Hum Pathol ; 34(8): 737-42, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14506632

RESUMO

We report on a deposition of oxalate crystals on ferruginous bodies after occupational exposure to asbestos demonstrated in 3 patients. We investigated the mechanism and possible significance of this deposition by testing the hypothesis that oxalate generated through nonenzymatic oxidation of ascorbate by asbestos-associated iron accounts for the deposition of the crystal on a ferruginous body. Crocidolite asbestos (1000 microg/mL) was incubated with 500 micromol H(2)O(2) and 500 micromol ascorbate for 24 hours at 22 degrees C. The dependence of oxalate generation on iron-catalyzed oxidant production was tested with the both the metal chelator deferoxamine and the radical scavenger dimethylthiourea. Incubation of crocidolite, H(2)O(2), and ascorbate in vitro generated approximately 42 nmol of oxalate in 24 hours. Oxalate generation was diminished significantly by the inclusion of either deferoxamine or dimethylthiourea in the reaction mixture. Incubation of asbestos bodies and uncoated fibers isolated from human lung with 500 micromol H(2)O(2) and 500 micromol ascorbate for 24 hours at 22 degrees C resulted in the generation of numerous oxalate crystals. We conclude that iron-catalyzed production of oxalate from ascorbate can account for the deposition of this crystal on ferruginous bodies.


Assuntos
Asbesto Crocidolita/metabolismo , Asbestose/metabolismo , Oxalato de Cálcio/metabolismo , Pulmão/metabolismo , Tioureia/análogos & derivados , Asbesto Crocidolita/efeitos adversos , Asbesto Crocidolita/química , Asbestose/etiologia , Asbestose/patologia , Ácido Ascórbico/química , Oxalato de Cálcio/análise , Oxalato de Cálcio/química , Cristalização , Cristalografia por Raios X , Desferroxamina/química , Evolução Fatal , Humanos , Peróxido de Hidrogênio/química , Ferro/química , Quelantes de Ferro/química , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Oxirredução , Tioureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...