Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12801, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834710

RESUMO

We use complex systems science to explore the emergent behavioral patterns that typify eusocial species, using collective ant foraging as a paradigmatic example. Our particular aim is to provide a methodology to quantify how the collective orchestration of foraging provides functional advantages to ant colonies. For this, we combine (i) a purpose-built experimental arena replicating ant foraging across realistic spatial and temporal scales, and (ii) a set of analytical tools, grounded in information theory and spin-glass approaches, to explore the resulting data. This combined approach yields computational replicas of the colonies; these are high-dimensional models that store the experimental foraging patterns through a training process, and are then able to generate statistically similar patterns, in an analogous way to machine learning tools. These in silico models are then used to explore the colony performance under different resource availability scenarios. Our findings highlight how replicas of the colonies trained under constant and predictable experimental food conditions exhibit heightened foraging efficiencies, manifested in reduced times for food discovery and gathering, and accelerated transmission of information under similar conditions. However, these same replicas demonstrate a lack of resilience when faced with new foraging conditions. Conversely, replicas of colonies trained under fluctuating and uncertain food conditions reveal lower efficiencies at specific environments but increased resilience to shifts in food location.


Assuntos
Formigas , Comportamento Alimentar , Animais , Formigas/fisiologia , Comportamento Alimentar/fisiologia , Simulação por Computador , Análise Espaço-Temporal , Comportamento Social , Comportamento Animal/fisiologia , Modelos Biológicos
2.
Entropy (Basel) ; 24(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36554223

RESUMO

While approaches based on physical grounds (such as the drift-diffusion model-DDM) have been exhaustively used in psychology and neuroscience to describe perceptual decision making in humans, similar approaches to complex situations, such as sequential (tree-like) decisions, are still scarce. For such scenarios that involve a reflective prospection of future options, we offer a plausible mechanism based on the idea that subjects can carry out an internal computation of the uncertainty about the different options available, which is computed through the corresponding Shannon entropy. When the amount of information gathered through sensory evidence is enough to reach a given threshold in the entropy, this will trigger the decision. Experimental evidence in favor of this entropy-based mechanism was provided by exploring human performance during navigation through a maze on a computer screen monitored with the help of eye trackers. In particular, our analysis allows us to prove that (i) prospection is effectively used by humans during such navigation tasks, and an indirect quantification of the level of prospection used is attainable; in addition, (ii) the distribution of decision times during the task exhibits power-law tails, a feature that our entropy-based mechanism is able to explain, unlike traditional (DDM-like) frameworks.

3.
Sci Rep ; 12(1): 10783, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750698

RESUMO

Behavioral contagion and the presence of behavioral cascades are natural features in groups of animals showing collective motion, such as schooling fish or grazing herbivores. Here we study empirical behavioral cascades observed in fish schools defined as avalanches of consecutive large changes in the heading direction of the trajectory of fish. In terms of a minimum turning angle introduced to define a large change, avalanches are characterized by distributions of size and duration showing scale-free signatures, reminiscent of self-organized critical behavior. We observe that avalanches are generally triggered by a small number of fish, which act as effective leaders that induce large rearrangements of the group's trajectory. This observation motivates the proposal of a simple model, based in the classical Vicsek model of collective motion, in which a given individual acts as a leader subject to random heading reorientations. The model reproduces qualitatively the empirical avalanche behavior observed in real schools, and hints towards a connection between effective leadership, long range interactions and avalanche behavior in collective movement.


Assuntos
Comportamento Social , Natação , Animais , Comportamento Animal , Peixes , Liderança , Modelos Biológicos
4.
Phys Rev E ; 103(5-1): 052109, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134199

RESUMO

Excited random walks represent a convenient model to study food intake in a media which is progressively depleted by the walker. Trajectories in the model alternate between (i) feeding and (ii) escape (when food is missed and so it must be found again) periods, each governed by different movement rules. Here, we explore the case where the escape dynamics is adaptive, so at short times an area-restricted search is carried out, and a switch to extensive or ballistic motion occurs later if necessary. We derive for this case explicit analytical expressions of the mean escape time and the asymptotic growth of the depleted region in one dimension. These, together with numerical results in two dimensions, provide surprising evidence that ballistic searches are detrimental in such scenarios, a result which could explain why ballistic movement is barely observed in animal searches at microscopic and millimetric scales, therefore providing significant implications for biological foraging.

5.
R Soc Open Sci ; 7(12): 201250, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33489274

RESUMO

Emergence of collective, as well as superorganism-like, behaviour in biological populations requires the existence of rules of communication, either direct or indirect, between organisms. Because reaching an understanding of such rules at the individual level can be often difficult, approaches carried out at higher, or effective, levels of description can represent a useful alternative. In the present work, we show how a spin-glass approach characteristic of statistical physics can be used as a tool to characterize the properties of the spatial occupancy patterns of a biological population. We exploit the presence of pairwise interactions in spin-glass models for detecting correlations between occupancies at different sites in the media. Such correlations, we claim, represent a proxy to the existence of planned and/or social strategies in the spatial organization of the population. Our spin-glass approach does not only identify those correlations but produces a statistical replica of the system (at the level of occupancy patterns) that can be subsequently used for testing alternative conditions/hypothesis. Here, this methodology is presented and illustrated for a particular case of study: we analyse occupancy patterns of Aphaenogaster senilis ants during foraging through a simplified environment consisting of a discrete (tree-like) artificial lattice. Our spin-glass approach consistently reproduces the experimental occupancy patterns across time, and besides, an intuitive biological interpretation of the parameters is attainable. Likewise, we prove that pairwise correlations are important for reproducing these dynamics by showing how a null model, where such correlations are neglected, would perform much worse; this provides a solid evidence to the existence of superorganism-like strategies in the colony.

6.
Sci Rep ; 9(1): 18488, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811222

RESUMO

The analysis of the classical radial distribution function of a system provides a possible procedure for uncovering interaction rules between individuals out of collective movement patterns. A formal extension of this approach has revealed recently the existence of a universal scaling in the collective spatial patterns of pedestrians, characterized by an effective potential of interaction [Formula: see text] conveniently defined in the space of the times-to-collision [Formula: see text] between the individuals. Here we significantly extend and clarify this idea by exploring numerically the emergence of that scaling for different scenarios. In particular, we compare the results of bidirectional flows when completely different rules of self-avoidance between individuals are assumed (from physical-like repulsive potentials to standard heuristic rules commonly used to reproduce pedestrians dynamics). We prove that all the situations lead to a common scaling in the t-space both in the disordered phase ([Formula: see text]) and in the lane-formation regime ([Formula: see text]), independent of the nature of the interactions considered. Our results thus suggest that these scalings cannot be interpreted as a proxy for how interactions between pedestrians actually occur, but they rather represent a common feature for bidirectional flows of self-avoiding agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...