Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 299(1): 16, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411741

RESUMO

Mitochondria play a key role in cell biology and have their own genome, residing in a highly oxidative environment that induces faster changes than the nuclear genome. Because of this, mitochondrial markers have been exploited to reconstruct phylogenetic and phylogeographic relationships in studies of adaptation and molecular evolution. In this study, we determined the complete mitogenome of the fungus-farming ant Mycetophylax simplex (Hymenoptera, Formicidae) and conducted a comparative analysis among 29 myrmicine ant mitogenomes. Mycetophylax simplex is an endemic ant that inhabits sand dunes along the southern Atlantic coast. Specifically, the species occur in the ecosystem known as "restinga", within the Atlantic Forest biome. Due to habitat degradation, land use and decline of restinga habitats, the species is considered locally extinct in extremely urban beaches and is listed as vulnerable on the Brazilian Red List (ICMBio). We employed a mitochondrion-targeting approach to obtain the complete mitogenome through high-throughput DNA sequencing technology. This method allowed us to determine the mitogenome with high performance, coverage and low cost. The circular mitogenome has a length of 16,367 base pairs enclosing 37 genes (13 protein-coding genes, 22 tRNAs and 2 rRNAs) along with one control region (CR). All the protein-coding genes begin with a typical ATN codon and end with the canonical stop codons. All tRNAs formed the fully paired acceptor stems and fold into the typical cloverleaf-shaped secondary structures. The gene order is consistent with the shared Myrmicinae structure, and the A + T content of the majority strand is 81.51%. Long intergenic spacers were not found but some gene are slightly shorter. The phylogenetic relationships based on concatenated nucleotide and amino acid sequences of the 13 protein-coding genes, using Maximum Likelihood and Bayesian Inference methods, indicated that mitogenome sequences were useful in resolving higher-level relationship within Formicidae.


Assuntos
Formigas , Genoma Mitocondrial , Animais , Genoma Mitocondrial/genética , Ecossistema , Teorema de Bayes , Filogenia , Mitocôndrias/genética , Formigas/genética
2.
Comp Cytogenet ; 17: 59-73, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38059050

RESUMO

The family Formicidae is composed of ants that organize themselves into castes in which every individual has a joint organizational function. Solenopsis Westwood, 1840 is an ant genus with opportunistic and aggressive characteristics, known for being invasive species and stings that cause burning in humans. This genus is particularly difficult to classify and identify since its morphology provides few indications for species differentiation. For this, a tool that has been useful for evolutionary and taxonomic studies is cytogenetics. Here, we cytogenetically studied Solenopsissaevissima Smith, 1855 from Ouro Preto, Minas Gerais, Brazil. We evaluated the occurrence of polyploid cells in individuals and colonies by conventional cytogenetics. A total of 450 metaphases were analyzed and counted. Chromosome counts of individuals and colonies showed varied numbers of ploidies, from n = 16 to 8n = 128. The karyomorphometrical approach allowed determination of the following karyotypes: n = 10 m + 4 sm + 2 st, 2n = 20 m + 8 sm + 4 st, and 4n = 40 m + 16 sm + 8 st. Polyploidy can be found naturally in individuals and colonies and may represent an adaptative trait related to widespread distribution and invasion ability of new habitats.

3.
Zoo Biol ; 42(6): 789-796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37466265

RESUMO

The global population of Dicotyles tajacu (Linnaeus, 1758) (Cetartiodactyla: Tayassuidae), commonly known as the collared peccary and distributed in the Neotropics, is currently in decline due to anthropogenic pressures. In this study, five microsatellite loci were used to genetically characterize a group of 20 captive-born collared peccaries intended for reintroduction. This study aimed to evaluate the genetic diversity and relatedness of captive individuals using microsatellite markers. The genetic data generated were used to evaluate the viability of the reintroduction and to propose measures for the management and conservation of this species. In this study, we found relatively high genetic diversity indices, indicating that the group was genetically diverse. Inbreeding coefficients with negative values were observed, indicating an excess of alleles in heterozygosis and an absence of inbreeding. One locus showed deviation from Hardy-Weinberg equilibrium, which may have been caused by the mixing of individuals from different origins. Relatedness analysis indicated that some individuals were highly related, with coefficients indicating they may be first-degree relatives. Our findings indicate that the studied group has enough genetic diversity to be released into nature, but the high individual relatedness found would require the adoption of strategies after the release of animals in the wild to ensure their persistence.


Assuntos
Animais de Zoológico , Artiodáctilos , Animais , Genótipo , Animais de Zoológico/genética , Artiodáctilos/genética , Repetições de Microssatélites/genética , Sequenciamento de Nucleotídeos em Larga Escala , Variação Genética
4.
Insect Mol Biol ; 31(3): 297-307, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35060209

RESUMO

Heterochromatin is an important genome constituent comprised by a high density of repetitive DNA sequences that mediate chromosome structure and function. The species Mycetophylax morschi currently harbours three cytotypes: 2n = 26, 2n = 28 and 2n = 30 chromosomes. However, Mycetophylax conformis and Mycetophylax simplex harbour 2n = 30 and 2n = 36 chromosomes, respectively. None of the cytotypes of M. morschi showed any AT-positive blocks, whereas the karyotypes of M. conformis and M. simplex revealed AT-rich blocks around the pericentromeric region and on the short arm of several chromosomes. This AT-rich pattern is coincident with the known heterochromatin distribution of psammophilous Mycetophylax, confirming that heterochromatin is AT-rich, in line with the genome size and AT%. Our results demonstrated that genome size among psammophilous Mycetophylax is correlated with the proportion of base pairs, biased to adenine and thymine. Thus, genome size and the proportion of adenine and thymine in the species studied here suggest that the genome changes in psammophilous Mycetophylax are related to the expansion of repetitive DNA in AT-rich heterochromatin. Considering the phylogenetic relationship of psammophilous Mycetophylax, the dynamic development of AT-rich heterochromatin and karyotype repatterning encompasses the diversification of such ants.


Assuntos
Formigas , Heterocromatina , Adenina , Animais , Formigas/genética , Heterocromatina/genética , Cariótipo , Filogenia , Timina
5.
Insects ; 12(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34940172

RESUMO

Ants are an important insect group that exhibits considerable diversity in chromosome numbers. Some species show only one chromosome, as in the males of the Australian bulldog ant Myrmecia croslandi, while some have as many as 60 chromosomes, as in the males of the giant Neotropical ant Dinoponera lucida. Fungus-growing ants are a diverse group in the Neotropical ant fauna, engaged in a symbiotic relationship with a basidiomycete fungus, and are widely distributed from Nearctic to Neotropical regions. Despite their importance, new chromosome counts are scarcely reported, and the marked variation in chromosome number across species has been poorly studied under phylogenetic and genome evolutionary contexts. Here, we present the results of the cytogenetic examination of fungus-farming ants and compile the cytogenetic characteristics and genome size of the species studied to date to draw insights regarding the evolutionary paths of karyotype changes and diversity. These data are coupled with a fossil-calibrated phylogenetic tree to discuss the mode and tempo of chromosomal shifting, considering whether there is an upper limit for chromosome number and genome size in ants, using fungus-farming ants as a model study. We recognize that karyotypes are generally quite variable across fungus-farming ant phylogeny, mostly between genera, and are more numerically conservative within genera. A low chromosome number, between 10 and 12 chromosomes, seems to present a notable long-term evolutionary stasis (intermediate evolutionary stasis) in fungus-farming ants. All the genome size values were inside a limited spectrum below 1 pg. Eventual departures in genome size occurred with regard to the mean of 0.38 pg, indicating that there is a genome, and likely a chromosome, number upper limit.

6.
Genome ; : 1-9, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34520688

RESUMO

Leaf-cutting ants are considered the most important herbivores in terrestrial environments throughout the Neotropics. Amoimyrmex Cristiano, Cardoso, & Sandoval, 2020 is the sister clade of the remaining leaf-cutting ants from the genera Atta and Acromyrmex. Amoimyrmex striatus was the only species cytogenetically studied within the genus and shares the same chromosomal number as Atta, bearing 22 chromosomes, whereas Acromyrmex bears 38 chromosomes, with the exception of the social parasite Acromyrmex ameliae (2n = 36). Our objective here was to cytogenetically analyze the species of Amoimyrmex bruchi and Amoimyrmex silvestrii, as well as to describe the karyotype of these sister species, using an integrative approach using classical and molecular cytogenetics. We aimed to characterize the cytogenetic markers that contribute to the systematics and taxonomy of the genus. Our results showed that the karyotypes of these two species are very similar, with an identical chromosome number (2n = 22), chromosome morphology (2K = 20m + 2sm), and location of 18S rDNA and telomeric repeat TTAGG on the chromosomes. However, the microsatellite probe GA(15) showed variation across the species and populations studied. We suggest that both species diverged relatively recently and are unmistakably sisters because of the many shared characteristics, including the highly conserved karyotypes.

7.
Comp Cytogenet ; 14(3): 369-385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879706

RESUMO

Telomeric sequences are conserved across species. The most common sequence reported among insects is (TTAGG)n, but its universal occurrence is not a consensus because other canonical motifs have been reported. In the present study, we used fluorescence in situ hybridization (FISH) using telomeric probes with (TTAGG)6 repeats to describe the telomere composition of leafcutter ants. We performed the molecular cytogenetic characterization of six Acromyrmex Mayr, 1865 and one Atta Fabricius, 1804 species (Acromyrmex ambiguus (Emery, 1888), Ac. crassispinus (Forel, 1909), Ac. lundii (Guérin-Mèneville, 1838), Ac. nigrosetosus (Forel, 1908), Ac. rugosus (Smith, 1858), Ac. subterraneus subterraneus (Forel, 1893), and Atta sexdens (Linnaeus, 1758)) and described it using a karyomorphometric approach on their chromosomes. The diploid chromosome number 2n = 38 was found in all Acromyrmex species, and the karyotypic formulas were as follows: Ac. ambiguus 2K = 14M + 12SM + 8ST + 4A, Ac. crassispinus 2K = 12M + 20SM + 4ST + 2A, Ac. lundii 2K = 10M + 14SM + 10ST + 4A, Ac. nigrosetosus 2K = 12M + 14SM + 10ST + 2A, and Ac. subterraneus subterraneus 2K = 14M + 18SM + 4ST + 2A. The exact karyotypic formula was not established for Ac. rugosus. FISH analyses revealed the telomeric regions in all the chromosomes of the species studied in the present work were marked by the (TTAGG)6 sequence. These results reinforce the premise that Formicidae presents high homology between their genera for the presence of the canonical sequence (TTAGG)n.

8.
PLoS One ; 15(8): e0237157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760102

RESUMO

Ants (Formicidae) present considerable diversity in chromosome numbers, which vary from n = 1 to n = 60, although this variation is not proportional to that in genome size, for which estimates range from 0.18 pg to 0.77 pg. Intraspecific variation in the chromosome number and karyotype structure has been reported among species, although the variation among populations of the same species has received much less attention, and there are few data on genome size. Here, we studied the karyotype length and genome size of different populations of the fungus-farming ants Mycetophylax conformis (Mayr, 1884) and Mycetophylax morschi (Emery, 1888). We also provide remarks on procedure for the estimation of ant genome size by Flow Cytometry (FCM) analysis. Chromosome number and morphology did not vary among the populations of M. conformis or the cytotypes of M. morschi, but karyotype length and genome size were significantly distinct among the populations of these ants. Our results on the variation in karyotype length and genome size among M. morschi and M. conformis populations reveal considerable diversity that would be largely overlooked by more traditional descriptions of karyotypes, which were also supported by the estimates of genome size obtained using flow cytometry. Changes in the amount of DNA reflect variation in the fine structure of the chromosomes, which may represent the first steps of karyotype evolution and may occur previously to any changes in the chromosome number.


Assuntos
Formigas/genética , Cromossomos de Insetos/genética , Variação Genética , Genoma de Inseto , Cariótipo , Animais , Citometria de Fluxo/métodos , Cariotipagem/métodos
9.
Comp Cytogenet ; 14(2): 197-210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431788

RESUMO

Comparative cytogenetic analyses are being increasingly used to collect information on species evolution, for example, diversification of closely related lineages and identification of morphologically indistinguishable species or lineages. Here, we have described the karyotype of the fungus-farming ant Mycetomoellerius iheringi Emery, 1888 and investigated its evolutionary relationships on the basis of molecular and cytogenetic data. The M. iheringi karyotype consists of 2n = 20 chromosomes (2K = 18M + 2SM). We also demonstrated that this species has the classical insect TTAGG telomere organization. Phylogenetic reconstruction showed that M. iheringi is phylogenetically closer to M. cirratus Mayhé-Nunes & Brandão, 2005 and M. kempfi Fowler, 1982. We compared M. iheringi with other congeneric species such as M. holmgreni Wheeler, 1925 and inferred that M. iheringi probably underwent a major pericentric inversion in one of its largest chromosomes, making it submetacentric. We discussed our results in the light of the phylogenetic relationships and chromosomal evolution.

10.
Environ Entomol ; 49(2): 383-390, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32078670

RESUMO

Abiotic conditions have a great influence on the structure of biological communities, especially considering ectothermic organisms, such as ants. In this study, we tested whether the daily temporal dynamics of an ant community in a tropical mountainous ecosystem is driven by daily fluctuations of abiotic factors, such as temperature and humidity. We also investigated whether the strong oscillation in daily temperature leads to high heterogeneity in ant species thermal responses. We have found that air and soil temperatures positively influenced the richness and frequency of foraging ants, while air humidity caused the opposite effect. Ant activity followed daily temperature fluctuations, which resulted in subtle differences in foraging patterns featured by heat-tolerant and heat-intolerant species. Moreover, the studied ant community exhibited broad and highly overlapped thermal responses, suggesting a likely resilience under temperature oscillations. Lastly, identifying how species traits are linked to oscillations in abiotic conditions is a necessary step to predict the effects of future climatic changes on biological community dynamics and ecosystem functioning.


Assuntos
Formigas , Animais , Ecossistema , Temperatura Alta , Solo , Temperatura
11.
Sci Rep ; 9(1): 18800, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827151

RESUMO

Fungus-farming ants of the genus Mycetophylax exhibit intra and interspecific chromosome variability, which makes them suitable for testing hypotheses about possible chromosomal rearrangements that endure lineage diversification. We combined cytogenetic and molecular data from Mycetophylax populations from coastal environments to trace the evolutionary history of the clade in light of chromosomal changes under a historical and geographic context. Our cytogenetic analyses revealed chromosomal differences within and among species. M. morschi exhibited three distinct karyotypes and considerable variability in the localization of 45S rDNA clusters. The molecular phylogeny was congruent with our cytogenetic findings. Biogeographical and divergence time dating analyses estimated that the most recent common ancestor of Mycetophylax would have originated at about 30 Ma in an area including the Amazon and Southern Grasslands, and several dispersion and vicariance events may have occurred before the colonization of the Brazilian Atlantic coast. Diversification of the psammophilous Mycetophylax first took place in the Middle Miocene (ca. 18-10 Ma) in the South Atlantic coast, while "M. morschi" lineages diversified during the Pliocene-Pleistocene transition (ca. 3-2 Ma) through founder-event dispersal for the Northern coastal regions. Psammophilous Mycetophylax diversification fits into the major global climatic events that have had a direct impact on the changes in sea level as well as deep ecological impact throughout South America. We assume therefore that putative chromosomal rearrangements correlated with increased ecological stress during the past climatic transitions could have intensified and/or accompanied the divergence of the psammophilous Mycetophylax. We further reiterate that "M. morschi" comprises a complex of at least three well-defined lineages, and we emphasize the role of this integrative approach for the identification and delimitation of evolutionary lineages.


Assuntos
Formigas/genética , Cromossomos de Insetos , Mudança Climática , Evolução Molecular , Animais , Brasil , Hibridização in Situ Fluorescente , Cariotipagem , Filogenia , Filogeografia
12.
BMC Evol Biol ; 18(1): 146, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30241462

RESUMO

BACKGROUND: Intraspecific variation in chromosome structure may cause genetic incompatibilities and thus provides the first step in the formation of species. In ants, chromosome number varies tremendously from 2n = 2 to 2n = 120, and several studies have revealed considerable variation in karyotype within species. However, most previous studies were limited to the description of chromosome number and morphology, and more detailed karyomorphometric analyses may reveal additional, substantial variation. Here, we studied karyotype length, genome size, and phylogeography of five populations of the fungus-farming ant Trachymyrmex holmgreni in order to detect potential barriers to gene flow. RESULTS: Chromosome number and morphology did not vary among the five populations, but karyotype length and genome size were significantly higher in the southernmost populations than in the northern populations of this ant. Individuals or colonies with different karyotype lengths were not observed. Karyotype length variation appears to result from variation in centromere length. CONCLUSION: T. holmgreni shows considerable variation in karyotype length and might provide a second example of centromere drive in ants, similar to what has previously been observed in Solenopsis fire ants. Whether this variation leads to genetic incompatibilities between the different populations remains to be studied.


Assuntos
Formigas/genética , Formigas/microbiologia , Cromossomos/genética , Evolução Molecular , Fungos/fisiologia , Fluxo Gênico , Genoma de Inseto , Cariótipo , Animais , Centrômero/metabolismo , Bandeamento Cromossômico , Tamanho do Genoma , Mitose , Filogenia
13.
Comp Cytogenet ; 12(1): 13-21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29362670

RESUMO

Chromosome counts and karyotype characterization have proved to be important features of a genome. Chromosome changes during the diversification of ants might play an important role, given the diversity and success of Formicidae. Comparative karyotype analyses on ants have enriched and helped ant systematics. Among leafcutter ants, two major chromosome counts have been described, one frequent in Atta Fabricius, 1804 (2n = 22 in all Atta spp. whose karyotype is known) and the other frequent in Acromyrmex Mayr, 1865 (2n = 38 in the majority of species whose karyotype is known). The main exception is Acromyrmex striatus (Roger, 1863), which harbors a diploid chromosome set of 22. Here we describe the use of fluorescence in situ hybridization (FISH) with telomeric probes with (TTAGG)6 repeats to describe the telomere composition of A. striatus and to recover potential interstitial non-telomeric signals that may reflect fusion events during the evolution of leafcutter lineage from 38 to 22 chromosomes. Further, we reconstruct the ancestral chromosome numbers of the leafcutter clade based on a recently proposed molecular phylogenetic hypothesis and phylogenomic tree. Distinct signals have been observed in both extremities on the telomere chromosomes of A. striatus. Non-telomeric signals have not been retrieved in our analysis. It could be supposed that the low-numbered karyotype indeed represents the ancestral chromosome number of leafcutters. The phylogenetic reconstruction also recovered a low chromosome number from the diverse approaches implemented, suggesting that n = 11 is the most likely ancestral karyotype of the leafcutter ants and is a plesiomorphic feature shared between A. striatus and Atta spp.

14.
Insects ; 8(4)2017 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-29065555

RESUMO

Here we use karyomorphometrical analysis to characterize and evaluate the karyotype of the turtle ant Cephalotes pusillus (Klug, 1824). This is the first representative of this diverse ant genus to be cytogenetically studied. They bear a diploid chromosome set of 44 chromosomes, which, according to the centromeric index, are metacentric, submetacentric, and subtelocentric. This small ant is quite widely distributed in the Neotropics and seems to be well adapted to living in disturbed areas. Here we report the species nesting on dead trunks used to build fences at countryside houses and farms. On these nests, we observed some never reported behavior of C. pusillus: the ants appear to be able to dig by actively removing small fragments of dead wood fiber, hence expanding their nest cavities. It was not thought that Cephalotes species had this ability, given that they nest in preexisting cavities. Our observations are initial remarks that the small plier-like mandibles of C. pusillus may not be a constraint for this species, adding to our knowledge on ant nesting biology.

15.
Comp Cytogenet ; 11(1): 45-53, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919948

RESUMO

We provide the first karyotype description of the agro-predatory ant species Megalomyrmex incisus Smith, 1947 (Myrmicinae, Formicidae), and chromosome counts of its host Mycetophylax conformis (Mayr, 1884) (Myrmicinae, Formicidae) from geographically distinct populations. Colonies of both species were sampled from coastal areas of Ilhéus, Bahia, Brazil, and transferred to the laboratory. Metaphase spreads were prepared from the cerebral ganglia of defecated larvae. The slides were examined and pictures of the best metaphases were taken. The chromosome number for Megalomyrmex incisus was 2n=50 and n=25. The karyotype of this species consists of 20 metacentric and 5 submetacentric pairs. Thus, the karyotype formula of the diploid set was 2K=40M + 10SM and a fundamental number FN=100. The host species Mycetophylax conformis has 2n=30 and the karyotype consisting of 11 metacentric and 4 submetacentric pairs. The karyotype formula was 2K=22M + 8SM, and a fundamental number FN=60. Megalomyrmex incisus showed a slightly higher chromosome number, placed at the marginal range of the known distribution of haploid karyotypes of the Myrmicinae. The chromosome number and chromosomal morphology of Mycetophylax conformis corresponded to those of previously studied populations, suggesting its karyotype stability.

16.
J Insect Sci ; 17(2)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28355474

RESUMO

Ants are considered one of the most successful groups in the planet's evolutionary history. Among them highlights the fungus-farming ants of the genera Atta and Acromyrmex that occur throughout most of the Americas. Within the Acromyrmex genus, the species A. striatus distinguishes from other Acromyrmex species as its morphology and karyotype differ from its congeners. This species is found in open environments of dry climate in the southern States of Brazil, Argentina, Paraguay and Uruguay; however, little is known about the current distribution of the species. This article aimed to investigate the current distribution of the species by compiling its known distribution and discussing its distributional range. To achieve this, published and unpublished data obtained through a literature search and active collections in various locations were compiled. Published and unpublished data revealed that 386 colonies were recorded, distributed across four countries where its occurrence is known. Environmental factors, such as temperature, humidity, soil type and vegetation, as well as historical geological and climate events that have modified Earth's surface may have influenced species distribution patterns. In the Neotropics, the environmental factors that most impacted the distribution of species were the glaciation periods that occurred in the Quaternary, leading to a great migratory process. These factors may have contributed to the current geographical distribution of A. striatus.


Assuntos
Formigas , Distribuição Animal , Animais , Clima , Ecossistema , Geografia , América do Sul
17.
PLoS One ; 11(1): e0146734, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26734939

RESUMO

Past climate changes often have influenced the present distribution and intraspecific genetic diversity of organisms. The objective of this study was to investigate the phylogeography and historical demography of populations of Acromyrmex striatus (Roger, 1863), a leaf-cutting ant species restricted to the open plains of South America. Additionally, we modeled the distribution of this species to predict its contemporary and historic habitat. From the partial sequences of the mitochondrial gene cytochrome oxidase I of 128 A. striatus workers from 38 locations we estimated genetic diversity and inferred historical demography, divergence time, and population structure. The potential distribution areas of A. striatus for current and quaternary weather conditions were modeled using the maximum entropy algorithm. We identified a total of 58 haplotypes, divided into five main haplogroups. The analysis of molecular variance (AMOVA) revealed that the largest proportion of genetic variation is found among the groups of populations. Paleodistribution models suggest that the potential habitat of A. striatus may have decreased during the Last Interglacial Period (LIG) and expanded during the Last Maximum Glacial (LGM). Overall, the past potential distribution recovered by the model comprises the current potential distribution of the species. The general structuring pattern observed was consistent with isolation by distance, suggesting a balance between gene flow and drift. Analysis of historical demography showed that populations of A. striatus had remained constant throughout its evolutionary history. Although fluctuations in the area of their potential historic habitat occurred during quaternary climate changes, populations of A. striatus are strongly structured geographically. However, explicit barriers to gene flow have not been identified. These findings closely match those in Mycetophylax simplex, another ant species that in some areas occurs in sympatry with A. striatus. Ecophysiological traits of this species and isolation by distance may together have shaped the phylogeographic pattern.


Assuntos
Formigas/genética , Variação Genética , Modelos Genéticos , Análise de Variância , Animais , Formigas/classificação , Argentina , Brasil , Mudança Climática , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Ecossistema , Haplótipos , Anotação de Sequência Molecular , Filogenia , Filogeografia , Curva ROC , Análise de Sequência de DNA , América do Sul
19.
BMC Evol Biol ; 15: 106, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26058480

RESUMO

BACKGROUND: During past glacial periods, many species of forest-dwelling animals experienced range contractions. In contrast, species living outside such moist habitats appear to have reacted to Quaternary changes in different ways. The Atlantic Forest represents an excellent opportunity to test phylogeographic hypotheses, because it has a wide range of vegetation types, including unforested habitats covered predominantly by herbaceous and shrubby plants, which are strongly influenced by the harsh environment with strong wind and high insolation. Here, we investigated the distribution of genetic diversity in the endemic sand dune ant Mycetophylax simplex across its known range along the Brazilian coast, with the aim of contributing to the understanding of alternative phylogeographic patterns. We used partial sequences of the mitochondrial gene cytochrome oxidase I and nuclear gene wingless from 108 specimens and 51 specimens, respectively, to assess the phylogeography and demographic history of this species. To achieve this we performed different methods of phylogenetic and standard population genetic analyses. RESULTS: The observed genetic diversity distribution and historical demographic profile suggests that the history of M. simplex does not match the scenario suggested for other Atlantic Forest species. Instead, it underwent demographic changes and range expansions during glacial periods. Our results show that M. simplex presents a shallow phylogeographic structure with isolation by distance among the studied populations, living in an almost panmictic population. Our coalescence approach indicates that the species maintained a stable population size until roughly 75,000 years ago, when it underwent a gradual demographic expansion that were coincident with the low sea-level during the Quaternary. Such demographic events were likely triggered by the expansion of the shorelines during the lowering of the sea level. CONCLUSIONS: Our data suggest that over evolutionary time M. simplex did not undergo dramatic range fragmentation, but rather it likely persisted in largely interconnected populations. Furthermore, we add an important framework about how both glacial and interglacial events could positively affect the distribution and diversification of species. The growing number of contrasting phylogeographic patterns within and among species and regions have shown that Quaternary events influenced the distribution of species in more ways than first supposed.


Assuntos
Formigas/genética , Filogeografia , Animais , Formigas/classificação , Formigas/enzimologia , Evolução Biológica , Brasil , Clima , DNA Mitocondrial/genética , Ecossistema , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Proteínas de Insetos/genética , Dados de Sequência Molecular , Filogenia , Densidade Demográfica , Dinâmica Populacional , Proteína Wnt1/genética
20.
Comp Cytogenet ; 8(3): 223-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25349673

RESUMO

To date, more than 65 species of Brazilian bees (of the superfamily Apoidea) have been cytogenetically studied, but only a few solitary species have been analyzed. One example is the genus Melitoma Lepeletier & Serville, 1828, for which there is no report in the literature with regard to cytogenetic studies. The objective of the present study is to analyze the chromosome number and morphology of the species Melitoma segmentaria (Fabricius, 1804), as well as to determine the pattern of heterochromatin distribution and identify the adenine-thymine (AT)- and guanine-cytosine (GC)-rich regions. Melitoma segmentaria presents chromosome numbers of 2n=30 (females) and n=15 (males). With C-banding, it is possible to classify the chromosomes into seven pseudo-acrocentric pairs (A(M)), seven pseudo-acrocentric pairs with interstitial heterochromatin (A(Mi)), and one totally heterochromatic metacentric pair (M(h)). Fluorochrome staining has revealed that heterochromatin present in the chromosomal arms is rich in GC base pairs (CMA3 (+)) and the centromeric region is rich in AT base pairs (DAPI(+)). The composition found for Melitoma diverges from the pattern observed in other bees, in which the heterochromatin is usually rich in AT. In bees, few heterochromatic regions are rich in GC and these are usually associated with or localized close to the nucleolus organizer regions (NORs). Silver nitrate impregnation marks the heterochromatin present in the chromosome arms, which makes identification of the NOR in the chromosomes impossible. As this technique reveals proteins in the NOR, the observation that is made in the present study suggests that the proteins found in the heterochromatin are qualitatively similar to those in the NOR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...