Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 625: 122079, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35932932

RESUMO

Pomalidomide (POM) is an FDA-approved immunomodulatory imide drug (IMiDs) an it is effectively used in the treatment of multiple myeloma. IMiDs are analogs of the drug thalidomide and they have been repurposed for the treatment of several diseases such as psoriatic arthritis and Kaposi Sarcoma. In recent years, IMiDs have been also evaluated as a new treatment for neurological disorders with an inflammatory and neuroinflammatory component. POM draws particular interest for its potent anti-TNF-α activity at significantly lower concentrations than the parent compound thalidomide. However, POM's low water solubility underpins its low gastrointestinal permeability resulting in irregular and poor absorption. The purpose of this work was to prepare a POM nanocrystal-based formulation that could efficiently improve POM's plasma and brain concentration after intraperitoneal injection. POM nanocrystals prepared as a nanosuspension by the media milling method showed a mean diameter of 219 nm and a polydispersity index of 0.21. POM's nanocrystal solubility value (22.97 µg/mL) in phosphate buffer was about 1.58 folds higher than the POM raw powder. Finally, in vivo studies conducted in adult Male Sprague-Dawley rats indicated that POM nanocrystal ensured higher and longer-lasting drug levels in plasma and brain when compared with POM coarse suspension.


Assuntos
Nanopartículas , Talidomida , Animais , Disponibilidade Biológica , Masculino , Nanopartículas/química , Ratos , Ratos Sprague-Dawley , Roedores , Solubilidade , Talidomida/análogos & derivados , Inibidores do Fator de Necrose Tumoral
2.
J Nanosci Nanotechnol ; 21(5): 2907-2916, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653457

RESUMO

In this study, pomegranate peel as a traditional natural remedy was extracted and encapsulated in proniosomal systems in order to improve its stability against harsh environmental conditions. Pomegranate peel was extracted by using sonication as a green extraction technology and the antioxidant activity of the obtained extract was evaluated to be 85.37% by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. Proniosomal powder was prepared based on the slurry method with a mixture of non-ionic surfactants namely span 60 and tween 20 in combination with cholesterol as a bilayer stabilizer. Proniosome-derived niosomes were achieved by hydration of the powder with water. The obtained vesicles were evaluated for their particle size, morphological observations, entrapment efficiency, cytotoxicity assay, DPPH antioxidant activity and, physical stability at 4 °C for 28 days. The results demonstrated that the proniosome-derived niosomes were of small size (198.16 nm for unloaded and 411.3 for extract loaded), quite homogeneous (PDI = 0.188 for unloaded and 0.216 for loaded) with highly negative charged spherical vesicles and showed appropriate physical stability during the time of storage. The encapsulation efficiency was 68.43±0.24% and the cytotoxicity assay proved that the formulations were not toxic against 3T3 fibroblast cells in the applied concentration.


Assuntos
Punica granatum , Suplementos Nutricionais , Lipossomos , Tamanho da Partícula , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA