Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mon Not R Astron Soc ; 520(4): 5126-5143, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36845327

RESUMO

Cosmic rays in star-forming galaxies are a dominant source of both diffuse γ-ray emission and ionization in gas too deeply shielded for photons to penetrate. Though the cosmic rays responsible for γ-rays and ionization are of different energies, they are produced by the same star formation-driven sources, and thus galaxies' star formation rates, γ-ray luminosities, and ionization rates should all be linked. In this paper, we use up-to-date cross-section data to determine this relationship, finding that cosmic rays in a galaxy of star formation rate [Formula: see text] and gas depletion time t dep produce a maximum primary ionization rate ζ ≈ 1 × 10-16(t dep/Gyr)-1 s-1 and a maximum γ-ray luminosity [Formula: see text] erg s-1 in the 0.1-100 GeV band. These budgets imply either that the ionization rates measured in Milky Way molecular clouds include a significant contribution from local sources that elevate them above the Galactic mean, or that CR-driven ionization in the Milky Way is enhanced by sources not linked directly to star formation. Our results also imply that ionization rates in starburst systems are only moderately enhanced compared to those in the Milky Way. Finally, we point out that measurements of γ-ray luminosities can be used to place constraints on galactic ionization budgets in starburst galaxies that are nearly free of systematic uncertainties on the details of cosmic ray acceleration.

2.
Nature ; 597(7876): 341-344, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526703

RESUMO

The Fermi Gamma-ray Space Telescope has revealed a diffuse γ-ray background at energies from 0.1 gigaelectronvolt to 1 teraelectronvolt, which can be separated into emission from our Galaxy and an isotropic, extragalactic component1. Previous efforts to understand the latter have been hampered by the lack of physical models capable of predicting the γ-ray emission produced by the many candidate sources, primarily active galactic nuclei2-5 and star-forming galaxies6-10, leaving their contributions poorly constrained. Here we present a calculation of the contribution of star-forming galaxies to the γ-ray background that does not rely on empirical scalings and is instead based on a physical model for the γ-ray emission produced when cosmic rays accelerated in supernova remnants interact with the interstellar medium11. After validating the model against local observations, we apply it to the observed cosmological star-forming galaxy population and recover an excellent match to both the total intensity and the spectral slope of the γ-ray background, demonstrating that star-forming galaxies alone can explain the full diffuse, isotropic γ-ray background.

3.
Nature ; 493(7430): 66-9, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23282363

RESUMO

The nucleus of the Milky Way is known to harbour regions of intense star formation activity as well as a supermassive black hole. Recent observations have revealed regions of γ-ray emission reaching far above and below the Galactic Centre (relative to the Galactic plane), the so-called 'Fermi bubbles'. It is uncertain whether these were generated by nuclear star formation or by quasar-like outbursts of the central black hole and no information on the structures' magnetic field has been reported. Here we report observations of two giant, linearly polarized radio lobes, containing three ridge-like substructures, emanating from the Galactic Centre. The lobes each extend about 60 degrees in the Galactic bulge, closely corresponding to the Fermi bubbles, and are permeated by strong magnetic fields of up to 15 microgauss. We conclude that the radio lobes originate in a biconical, star-formation-driven (rather than black-hole-driven) outflow from the Galaxy's central 200 parsecs that transports a huge amount of magnetic energy, about 10(55) ergs, into the Galactic halo. The ridges wind around this outflow and, we suggest, constitute a 'phonographic' record of nuclear star formation activity over at least ten million years.

4.
Phys Rev Lett ; 106(10): 101102, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21469782

RESUMO

Recently evidence has emerged for enormous features in the γ-ray sky observed by the Fermi-LAT instrument: bilateral "bubbles" of emission centered on the core of the Galaxy and extending to around ± 10 kpc from the Galactic plane. These structures are coincident with a nonthermal microwave "haze" and an extended region of x-ray emission. The bubbles' γ-ray emission is characterized by a hard and relatively uniform spectrum, relatively uniform intensity, and an overall luminosity 4×10(37) erg/s, around 1 order of magnitude larger than their microwave luminosity while more than order of magnitude less than their x-ray luminosity. Here we show that the bubbles are naturally explained as due to a population of relic cosmic ray protons and heavier ions injected by processes associated with extremely long time scale (≳ 8 Gyr) and high areal density star formation in the Galactic center.

5.
Nature ; 463(7277): 65-7, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20054391

RESUMO

The amplitude of the magnetic field near the Galactic Centre has been uncertain by two orders of magnitude for several decades. On a scale of approximately 100 parsecs (pc), fields of approximately 1,000 microgauss (microG; refs 1-3) have been reported, implying a magnetic energy density more than 10,000 times stronger than typical for the Galaxy. Alternatively, the assumption of pressure equilibrium between the various phases of the Galactic Centre interstellar medium (including turbulent molecular gas, the contested 'very hot' plasma, and the magnetic field) suggests fields of approximately 100 microG over approximately 400 pc size scales. Finally, assuming equipartition, fields of only approximately 6 microG have been inferred from radio observations for 400 pc scales. Here we report a compilation of previous data that reveals a downward break in the region's non-thermal radio spectrum (attributable to a transition from bremsstrahlung to synchrotron cooling of the in situ cosmic-ray electron population). We show that the spectral break requires that the Galactic Centre field be at least approximately 50 microG on 400 pc scales, lest the synchrotron-emitting electrons produce too much gamma-ray emission, given other existing constraints. Other considerations support a field of 100 microG, implying that over 10% of the Galaxy's magnetic energy is contained in only less than or approximately 0.05% of its volume.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...