Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acid Ther ; 34(3): 143-155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38648015

RESUMO

Single-stranded oligonucleotides (SSOs) are a rapidly expanding class of therapeutics that comprises antisense oligonucleotides, microRNAs, and aptamers, with ten clinically approved molecules. Chemical modifications such as the phosphorothioate backbone and the 2'-O-methyl ribose can improve the stability and pharmacokinetic properties of therapeutic SSOs, but they can also lead to toxicity in vitro and in vivo through nonspecific interactions with cellular proteins, gene expression changes, disturbed RNA processing, and changes in nuclear structures and protein distribution. In this study, we screened a mini library of 277 phosphorothioate and 2'-O-methyl-modified SSOs, with or without mRNA complementarity, for cytotoxic properties in two cancer cell lines. Using circular dichroism, nucleic magnetic resonance, and molecular dynamics simulations, we show that phosphorothioate- and 2'-O-methyl-modified SSOs that form stable hairpin structures through Watson-Crick base pairing are more likely to be cytotoxic than those that exist in an extended conformation. In addition, moderate and highly cytotoxic SSOs in our dataset have a higher mean purine composition than pyrimidine. Overall, our study demonstrates a structure-cytotoxicity relationship and indicates that the formation of stable hairpins should be a consideration when designing SSOs toward optimal therapeutic profiles.


Assuntos
Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos Fosforotioatos , Humanos , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/farmacologia , Linhagem Celular Tumoral , Pareamento de Bases , Relação Estrutura-Atividade , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Dicroísmo Circular
2.
Biology (Basel) ; 12(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37998004

RESUMO

Human single-stranded DNA binding protein 1 (hSSB1) is critical to preserving genome stability, interacting with single-stranded DNA (ssDNA) through an oligonucleotide/oligosaccharide binding-fold. The depletion of hSSB1 in cell-line models leads to aberrant DNA repair and increased sensitivity to irradiation. hSSB1 is over-expressed in several types of cancers, suggesting that hSSB1 could be a novel therapeutic target in malignant disease. hSSB1 binding studies have focused on DNA; however, despite the availability of 3D structures, small molecules targeting hSSB1 have not been explored. Quinoline derivatives targeting hSSB1 were designed through a virtual fragment-based screening process, synthesizing them using AlphaLISA and EMSA to determine their affinity for hSSB1. In parallel, we further screened a structurally diverse compound library against hSSB1 using the same biochemical assays. Three compounds with nanomolar affinity for hSSB1 were identified, exhibiting cytotoxicity in an osteosarcoma cell line. To our knowledge, this is the first study to identify small molecules that modulate hSSB1 activity. Molecular dynamics simulations indicated that three of the compounds that were tested bound to the ssDNA-binding site of hSSB1, providing a framework for the further elucidation of inhibition mechanisms. These data suggest that small molecules can disrupt the interaction between hSSB1 and ssDNA, and may also affect the ability of cells to repair DNA damage. This test study of small molecules holds the potential to provide insights into fundamental biochemical questions regarding the OB-fold.

3.
Front Cell Infect Microbiol ; 13: 1051602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936756

RESUMO

Introduction: As antibiotic resistance has become more prevalent, the social and economic impacts are increasingly pressing. Indeed, bacteria have developed the SOS response which facilitates the evolution of resistance under genotoxic stress. The transcriptional repressor, LexA, plays a key role in this response. Mutation of LexA to a non-cleavable form that prevents the induction of the SOS response sensitizes bacteria to antibiotics. Achieving the same inhibition of proteolysis with small molecules also increases antibiotic susceptibility and reduces drug resistance acquisition. The availability of multiple LexA crystal structures, and the unique Ser-119 and Lys-156 catalytic dyad in the protein enables the rational design of inhibitors. Methods: We pursued a binary approach to inhibit proteolysis; we first investigated ß-turn mimetics, and in the second approach we tested covalent warheads targeting the Ser-119 residue. We found that the cleavage site region (CSR) of the LexA protein is a classical Type II ß-turn, and that published 1,2,3-triazole compounds mimic the ß-turn. Generic covalent molecule libraries and a ß-turn mimetic library were docked to the LexA C-terminal domain using molecular modelling methods in FlexX and CovDock respectively. The 133 highest-scoring molecules were screened for their ability to inhibit LexA cleavage under alkaline conditions. The top molecules were then tested using a RecA-mediated cleavage assay. Results: The ß-turn library screen did not produce any hit compounds that inhibited RecA-mediated cleavage. The covalent screen discovered an electrophilic serine warhead that can inhibit LexA proteolysis, reacting with Ser-119 via a nitrile moiety. Discussion: This research presents a starting point for hit-to-lead optimisation, which could lead to inhibition of the SOS response and prevent the acquisition of antibiotic resistance.


Assuntos
Bactérias , Proteínas de Bactérias , Proteólise , Proteínas de Bactérias/metabolismo , Bactérias/metabolismo , Mutação , Antibacterianos/farmacologia
4.
Prostate ; 83(7): 628-640, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811381

RESUMO

BACKGROUND: Activation and regulation of androgen receptor (AR) signaling and the DNA damage response impact the prostate cancer (PCa) treatment modalities of androgen deprivation therapy (ADT) and radiotherapy. Here, we have evaluated a role for human single-strand binding protein 1 (hSSB1/NABP2) in modulation of the cellular response to androgens and ionizing radiation (IR). hSSB1 has defined roles in transcription and maintenance of genome stability, yet little is known about this protein in PCa. METHODS: We correlated hSSB1 with measures of genomic instability across available PCa cases from The Cancer Genome Atlas (TCGA). Microarray and subsequent pathway and transcription factor enrichment analysis were performed on LNCaP and DU145 prostate cancer cells. RESULTS: Our data demonstrate that hSSB1 expression in PCa correlates with measures of genomic instability including multigene signatures and genomic scars that are reflective of defects in the repair of DNA double-strand breaks via homologous recombination. In response to IR-induced DNA damage, we demonstrate that hSSB1 regulates cellular pathways that control cell cycle progression and the associated checkpoints. In keeping with a role for hSSB1 in transcription, our analysis revealed that hSSB1 negatively modulates p53 and RNA polymerase II transcription in PCa. Of relevance to PCa pathology, our findings highlight a transcriptional role for hSSB1 in regulating the androgen response. We identified that AR function is predicted to be impacted by hSSB1 depletion, whereby this protein is required to modulate AR gene activity in PCa. CONCLUSIONS: Our findings point to a key role for hSSB1 in mediating the cellular response to androgen and DNA damage via modulation of transcription. Exploiting hSSB1 in PCa might yield benefits as a strategy to ensure a durable response to ADT and/or radiotherapy and improved patient outcomes.


Assuntos
Proteínas de Ligação a DNA , Proteínas Mitocondriais , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Androgênios/farmacologia , Androgênios/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Proteínas Mitocondriais/metabolismo
5.
Commun Biol ; 4(1): 484, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875784

RESUMO

Genomic stability is critical for normal cellular function and its deregulation is a universal hallmark of cancer. Here we outline a previously undescribed role of COMMD4 in maintaining genomic stability, by regulation of chromatin remodelling at sites of DNA double-strand breaks. At break-sites, COMMD4 binds to and protects histone H2B from monoubiquitination by RNF20/RNF40. DNA damage-induced phosphorylation of the H2A-H2B heterodimer disrupts the dimer allowing COMMD4 to preferentially bind H2A. Displacement of COMMD4 from H2B allows RNF20/40 to monoubiquitinate H2B and for remodelling of the break-site. Consistent with this critical function, COMMD4-deficient cells show excessive elongation of remodelled chromatin and failure of both non-homologous-end-joining and homologous recombination. We present peptide-mapping and mutagenesis data for the potential molecular mechanisms governing COMMD4-mediated chromatin regulation at DNA double-strand breaks.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Biomarcadores Tumorais/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Histonas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Células HEK293 , Células HeLa , Humanos
6.
Nucleic Acids Res ; 49(6): 3294-3307, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33660778

RESUMO

DNA repair pathways are essential to maintain the integrity of the genome and prevent cell death and tumourigenesis. Here, we show that the Barrier-to-Autointegration Factor (Banf1) protein has a role in the repair of DNA double-strand breaks. Banf1 is characterized as a nuclear envelope protein and mutations in Banf1 are associated with the severe premature aging syndrome, Néstor-Guillermo Progeria Syndrome. We have previously shown that Banf1 directly regulates the activity of PARP1 in the repair of oxidative DNA lesions. Here, we show that Banf1 also has a role in modulating DNA double-strand break repair through regulation of the DNA-dependent Protein Kinase catalytic subunit, DNA-PKcs. Specifically, we demonstrate that Banf1 relocalizes from the nuclear envelope to sites of DNA double-strand breaks. We also show that Banf1 can bind to and directly inhibit the activity of DNA-PKcs. Supporting this, cellular depletion of Banf1 leads to an increase in non-homologous end-joining and a decrease in homologous recombination, which our data suggest is likely due to unrestrained DNA-PKcs activity. Overall, this study identifies how Banf1 regulates double-strand break repair pathway choice by modulating DNA-PKcs activity to control genome stability within the cell.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Linhagem Celular , Células HEK293 , Recombinação Homóloga , Humanos
7.
Front Cell Dev Biol ; 9: 709618, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087822

RESUMO

Activation of the STING pathway upon genotoxic treatment of cancer cells has been shown to lead to anti-tumoral effects, mediated through the acute production of interferon (IFN)-ß. Conversely, the pathway also correlates with the expression of NF-κB-driven pro-tumorigenic genes, but these associations are only poorly defined in the context of genotoxic treatment, and are thought to correlate with a chronic engagement of the pathway. We demonstrate here that half of the STING-expressing cancer cells from the NCI60 panel rapidly increased expression of pro-tumorigenic IL-6 upon genotoxic DNA damage, often independent of type-I IFN responses. While preferentially dependent on canonical STING, we demonstrate that genotoxic DNA damage induced by camptothecin (CPT) also drove IL-6 production through non-canonical STING signaling in selected cancer cells. Consequently, pharmacological inhibition of canonical STING failed to broadly inhibit IL-6 production induced by CPT, although this could be achieved through downstream ERK1/2 inhibition. Finally, prolonged inhibition of canonical STING signaling was associated with increased colony formation of MG-63 cells, highlighting the duality of STING signaling in also restraining the growth of selected cancer cells. Collectively, our findings demonstrate that genotoxic-induced DNA damage frequently leads to the rapid production of pro-tumorigenic IL-6 in cancer cells, independent of an IFN signature, through canonical and non-canonical STING activation; this underlines the complexity of STING engagement in human cancer cells, with frequent acute pro-tumorigenic activities induced by DNA damage. We propose that inhibition of ERK1/2 may help curb such pro-tumorigenic responses to DNA-damage, while preserving the anti-proliferative effects of the STING-interferon axis.

8.
Curr Med Chem ; 27(12): 1901-1921, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31258058

RESUMO

BACKGROUND: Reactive Oxygen Species (ROS) are by-products of normal cellular metabolic processes, such as mitochondrial oxidative phosphorylation. While low levels of ROS are important signalling molecules, high levels of ROS can damage proteins, lipids and DNA. Indeed, oxidative DNA damage is the most frequent type of damage in the mammalian genome and is linked to human pathologies such as cancer and neurodegenerative disorders. Although oxidative DNA damage is cleared predominantly through the Base Excision Repair (BER) pathway, recent evidence suggests that additional pathways such as Nucleotide Excision Repair (NER) and Mismatch Repair (MMR) can also participate in clearance of these lesions. One of the most common forms of oxidative DNA damage is the base damage 8-oxoguanine (8-oxoG), which if left unrepaired may result in G:C to A:T transversions during replication, a common mutagenic feature that can lead to cellular transformation. OBJECTIVE: Repair of oxidative DNA damage, including 8-oxoG base damage, involves the functional interplay between a number of proteins in a series of enzymatic reactions. This review describes the role and the redox regulation of key proteins involved in the initial stages of BER of 8-oxoG damage, namely Apurinic/Apyrimidinic Endonuclease 1 (APE1), human 8-oxoguanine DNA glycosylase-1 (hOGG1) and human single-stranded DNA binding protein 1 (hSSB1). Moreover, the therapeutic potential and modalities of targeting these key proteins in cancer are discussed. CONCLUSION: It is becoming increasingly apparent that some DNA repair proteins function in multiple repair pathways. Inhibiting these factors would provide attractive strategies for the development of more effective cancer therapies.


Assuntos
Reparo do DNA , Neoplasias , Animais , DNA , Dano ao DNA , Humanos , Oxirredução
9.
Nat Commun ; 10(1): 5501, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796734

RESUMO

The DNA repair capacity of human cells declines with age, in a process that is not clearly understood. Mutation of the nuclear envelope protein barrier-to-autointegration factor 1 (Banf1) has previously been shown to cause a human progeroid disorder, Néstor-Guillermo progeria syndrome (NGPS). The underlying links between Banf1, DNA repair and the ageing process are unknown. Here, we report that Banf1 controls the DNA damage response to oxidative stress via regulation of poly [ADP-ribose] polymerase 1 (PARP1). Specifically, oxidative lesions promote direct binding of Banf1 to PARP1, a critical NAD+-dependent DNA repair protein, leading to inhibition of PARP1 auto-ADP-ribosylation and defective repair of oxidative lesions, in cells with increased Banf1. Consistent with this, cells from patients with NGPS have defective PARP1 activity and impaired repair of oxidative lesions. These data support a model whereby Banf1 is crucial to reset oxidative-stress-induced PARP1 activity. Together, these data offer insight into Banf1-regulated, PARP1-directed repair of oxidative lesions.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Mutação/genética , Poli(ADP-Ribose) Polimerase-1/química , Poli Adenosina Difosfato Ribose/metabolismo , Progéria/metabolismo , Ligação Proteica , Domínios Proteicos
10.
Methods Mol Biol ; 2054: 171-183, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482456

RESUMO

Digital holographic imaging (DHI) is a noninvasive, live cell imaging technique that enables long-term quantitative visualization of cells in culture. DHI uses phase-shift imaging to monitor and quantify cellular events such as cell division, cell death, cell migration, and drug responses. In recent years, the application of DHI has expanded from its use in the laboratory to the clinical setting, and currently it is being developed for use in theranostics. Here, we describe the use of the DHI platform HoloMonitorM4 to evaluate the effects of novel, targeted cancer therapies on cell viability and proliferation using the HeLa cancer cell line as a model. We present single cell tracking and population-wide analysis of multiple cell morphology parameters.


Assuntos
Antineoplásicos/farmacologia , Holografia/métodos , Microscopia Intravital/métodos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células HeLa , Holografia/instrumentação , Humanos , Microscopia Intravital/instrumentação , Microscopia de Contraste de Fase/instrumentação , Microscopia de Contraste de Fase/métodos , Terapia de Alvo Molecular/métodos , Neoplasias/patologia , Nanomedicina Teranóstica/métodos
11.
Semin Cell Dev Biol ; 86: 121-128, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29577982

RESUMO

Our genomic DNA is found predominantly in a double-stranded helical conformation. However, there are a number of cellular transactions and DNA damage events that result in the exposure of single stranded regions of DNA. DNA transactions require these regions of single stranded DNA, but they are only transient in nature as they are particularly susceptible to further damage through chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. To protect these exposed regions of single stranded DNA, all living organisms have members of the Single Stranded DNA Binding (SSB) protein family, which are characterised by a conserved oligonucleotide/oligosaccharide-binding (OB) domain. In humans, three such proteins members have been identified; namely the Replication Protein A (RPA) complex, hSSB1 and hSSB2. While RPA is extremely well characterised, the roles of hSSB1 and hSSB2 have only emerged recently. In this review, we discuss the critical roles that hSSB1 plays in the maintenance of genomic stability.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Mitocondriais/metabolismo , DNA/genética , Humanos
12.
BMC Mol Biol ; 18(1): 13, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28506294

RESUMO

BACKGROUND: Maintenance of genome stability is critical in human cells. Mutations in or loss of genome stability pathways can lead to a number of pathologies including cancer. hSSB1 is a critical DNA repair protein functioning in the repair and signalling of stalled DNA replication forks, double strand DNA breaks and oxidised DNA lesions. The BLM helicase is central to the repair of both collapsed DNA replication forks and double strand DNA breaks by homologous recombination. RESULTS: In this study, we demonstrate that hSSB1 and BLM helicase form a complex in cells and the interaction is altered in response to ionising radiation (IR). BLM and hSSB1 also co-localised at nuclear foci following IR-induced double strand breaks and stalled replication forks. We show that hSSB1 depleted cells contain less BLM protein and that this deficiency is due to proteasome mediated degradation of BLM. Consequently, there is a defect in recruitment of BLM to chromatin in response to ionising radiation-induced DSBs and to hydroxyurea-induced stalled and collapsed replication forks. CONCLUSIONS: Our data highlights that BLM helicase and hSSB1 function in a dynamic complex in cells and that this complex is likely required for BLM protein stability and function.


Assuntos
RecQ Helicases/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteólise , Estresse Fisiológico
13.
BMC Mol Biol ; 15: 27, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25495845

RESUMO

BACKGROUND: Premature aging syndromes recapitulate many aspects of natural aging and provide an insight into this phenomenon at a molecular and cellular level. The progeria syndromes appear to cause rapid aging through disruption of normal nuclear structure. Recently, a coding mutation (c.34G > A [p.A12T]) in the Barrier to Autointegration Factor 1 (BANF1) gene was identified as the genetic basis of Néstor-Guillermo Progeria syndrome (NGPS). This mutation was described to cause instability in the BANF1 protein, causing a disruption of the nuclear envelope structure. RESULTS: Here we demonstrate that the BANF1 A12T protein is indeed correctly folded, stable and that the observed phenotype, is likely due to the disruption of the DNA binding surface of the A12T mutant. We demonstrate, using biochemical assays, that the BANF1 A12T protein is impaired in its ability to bind DNA while its interaction with nuclear envelope proteins is unperturbed. Consistent with this, we demonstrate that ectopic expression of the mutant protein induces the NGPS cellular phenotype, while the protein localizes normally to the nuclear envelope. CONCLUSIONS: Our study clarifies the role of the A12T mutation in NGPS patients, which will be of importance for understanding the development of the disease.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutação Puntual , Progéria/genética , Envelhecimento , Alanina/genética , Linhagem Celular , DNA/metabolismo , Proteínas de Ligação a DNA/análise , Células HeLa , Humanos , Modelos Moleculares , Proteínas Nucleares/análise , Progéria/metabolismo , Conformação Proteica , Estabilidade Proteica , Treonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA