Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 1246, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380073

RESUMO

Stromal cells interact with immune cells during initiation and resolution of immune responses, though the precise underlying mechanisms remain to be resolved. Lessons learned from stromal cell-based therapies indicate that environmental signals instruct their immunomodulatory action contributing to immune response control. Here, to the best of our knowledge, we show a novel function for the guanine-exchange factor DOCK2 in regulating immunosuppressive function in three human stromal cell models and by siRNA-mediated DOCK2 knockdown. To identify immune function-related stromal cell molecular signatures, we first reprogrammed mesenchymal stem/progenitor cells (MSPCs) into induced pluripotent stem cells (iPSCs) before differentiating these iPSCs in a back-loop into MSPCs. The iPSCs and immature iPS-MSPCs lacked immunosuppressive potential. Successive maturation facilitated immunomodulation, while maintaining clonogenicity, comparable to their parental MSPCs. Sequential transcriptomics and methylomics displayed time-dependent immune-related gene expression trajectories, including DOCK2, eventually resembling parental MSPCs. Severe combined immunodeficiency (SCID) patient-derived fibroblasts harboring bi-allelic DOCK2 mutations showed significantly reduced immunomodulatory capacity compared to non-mutated fibroblasts. Conditional DOCK2 siRNA knockdown in iPS-MSPCs and fibroblasts also immediately reduced immunomodulatory capacity. Conclusively, CRISPR/Cas9-mediated DOCK2 knockout in iPS-MSPCs also resulted in significantly reduced immunomodulation, reduced CDC42 Rho family GTPase activation and blunted filopodia formation. These data identify G protein signaling as key element devising stromal cell immunomodulation.


Assuntos
Proteínas Ativadoras de GTPase , Guanina , Humanos , Proteínas Ativadoras de GTPase/genética , RNA Interferente Pequeno , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Imunidade , Imunomodulação
2.
Cells ; 10(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34943829

RESUMO

Acute myeloid leukemia (AML) cells can secrete trophic factors, including extracellular vesicles (EVs), instructing the stromal leukemic niche. Here, we introduce a scalable workflow for purification of immunomodulatory AML-EVs to compare their phenotype and function to the parental AML cells and their secreted soluble factors. AML cell lines HL-60, KG-1, OCI-AML3, and MOLM-14 released EVs with a peak diameter of approximately 80 nm in serum-free particle-reduced medium. We enriched EVs >100x using tangential flow filtration (TFF) and separated AML-derived soluble factors and cells in parallel. EVs were characterized by electron microscopy, immunoblotting, and flow cytometry, confirming the double-membrane morphology, purity and identity. AML-EVs showed significant enrichment of immune response and leukemia-related pathways in tandem mass-tag proteomics and a significant dose-dependent inhibition of T cell proliferation, which was not observed with AML cells or their soluble factors. Furthermore, AML-EVs dose-dependently reduced NK cell lysis of third-party K-562 leukemia targets. This emphasizes the peculiar role of AML-EVs in leukemia immune escape and indicates novel EV-based targets for therapeutic interventions.


Assuntos
Vesículas Extracelulares/metabolismo , Imunomodulação , Leucemia Mieloide Aguda/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Vesículas Extracelulares/ultraestrutura , Humanos , Terapia de Imunossupressão , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia
3.
J Leukoc Biol ; 108(6): 1803-1814, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32356366

RESUMO

B-1 cells are a B-lymphocyte subtype whose roles in immunity are not completely defined. These cells can produce cytokines (mainly IL-10) and natural and specific antibodies. Currently, extracellular vesicles (EVs) released by immune cells have emerged as new important entities in cell-cell communication. Immune cells release EVs that can activate and/or modulate other immune cells. Here, we characterized the EVs released by peritoneal B-1 cells infected or not with Leishmania (Leishmania) amazonensis. This Leishmania species causes cutaneous leishmaniasis and can infect macrophages and B-1 cells. Our results showed that peritoneal B-1 cells spontaneously release EVs, but the parasite stimulated an increase in EVs production by peritoneal B-1 cells. The treatment of BALB/c and C57BL/6 bone marrow-derived macrophages (BMDM) with EVs from infected peritoneal B-1 cells led to differential expression of iNOS, IL-6, IL-10, and TNF-α. Additionally, BALB/c mice previous treated with EVs released by peritoneal B-1 cells showed a significant lower lesion size and parasite burden. Thus, this study demonstrated that peritoneal B-1 cells could release EVs that can alter the functions of macrophages in vitro and in vivo these EVs altered the course of L. amazonensis infection. These findings represent the first evidence that EVs from peritoneal B-1 cells can act as a new mechanism of cellular communication between macrophages and B-1 cells, contributing to immunity against experimental leishmaniasis.


Assuntos
Subpopulações de Linfócitos B/imunologia , Comunicação Celular/imunologia , Vesículas Extracelulares/imunologia , Leishmania/imunologia , Leishmaniose/imunologia , Macrófagos Peritoneais/imunologia , Animais , Subpopulações de Linfócitos B/patologia , Citocinas/imunologia , Vesículas Extracelulares/patologia , Feminino , Leishmaniose/patologia , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/imunologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-32266161

RESUMO

Extracellular vesicles (EVs) shed by trypomastigote forms of Trypanosoma cruzi have the ability to interact with host tissues, increase invasion, and modulate the host innate response. In this study, EVs shed from T. cruzi or T.cruzi-infected macrophages were investigated as immunomodulatory agents during the initial steps of infection. Initially, by scanning electron microscopy and nanoparticle tracking analysis, we determined that T. cruzi-infected macrophages release higher numbers of EVs (50-300 nm) as compared to non-infected cells. Using Toll-like-receptor 2 (TLR2)-transfected CHO cells, we observed that pre-incubation of these host cells with parasite-derived EVs led to an increase in the percentage of infected cells. In addition, EVs from parasite or T.cruzi-infected macrophages or not were able to elicit translocation of NF-κB by interacting with TLR2, and as a consequence, to alter the EVs the gene expression of proinflammatory cytokines (TNF-α, IL-6, and IL-1ß), and STAT-1 and STAT-3 signaling pathways. By proteomic analysis, we observed highly significant changes in the protein composition between non-infected and infected host cell-derived EVs. Thus, we observed the potential of EVs derived from T. cruzi during infection to maintain the inflammatory response in the host.


Assuntos
Vesículas Extracelulares , Trypanosoma cruzi , Animais , Cricetinae , Cricetulus , Humanos , Macrófagos , Proteômica , Receptor 2 Toll-Like
6.
Front Microbiol ; 9: 2286, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333803

RESUMO

Sporotrichosis is a mycosis that affects the skin, lymphatic system and other organs in humans and animals. The disease has a worldwide distribution, with endemic areas in Brazil, and is caused by a complex of species, including Sporothrix brasiliensis. Some fungi release extracellular vesicles (EVs) that can interact with the host cell and modulate the host immune response. The aim of this study was to analyze the participation of S. brasiliensis EVs in the modulation of dendritic cells (DCs) and in the control of infection in vivo. Our results showed that in vitro, the EVs isolated from S. brasiliensis induced an increase in the phagocytic index and fungal burden in DCs. In addition, we observed a significant increase in IL-12p40 and TNF-α cytokine production. Then, the EVs were inoculated into BALB/c mice before subcutaneous infection with yeast, and the lesion was analyzed after 21, 35, and 42 days. An increase in fungal burden and lesion diameter were observed after 21 days in mice inoculated with a high concentration of EVs. However, after 35 days, we observed a regression of the lesion, which persisted until 42 days after infection. Interestingly, we observed an increase in fungal burden in these mice. In addition, we observed the presence of immunogenic components and proteins that could be related with virulence in EVs. These results suggest that EVs can play an important role in virulence and modulation of the host immune system during experimental S. brasiliensis infection.

7.
Allergy Asthma Immunol Res ; 10(4): 406-419, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29949837

RESUMO

PURPOSE: The use of tolerogenic dendritic cells (TolDCs) to control exacerbated immune responses may be a prophylactic and therapeutic option for application in autoimmune and allergic conditions. The objective of this work was to evaluate the effects of TolDC administration in a mouse model of allergic airway inflammation caused by mite extract. METHODS: Mouse bone marrow-derived TolDCs were induced by incubation with granulocyte-macrophage colony-stimulating factor (GM-CSF) and dexamethasone, and then characterized by flow cytometry and cytokine production by enzyme-linked immunosorbent assay (ELISA). For the in vivo model of Blomia tropicalis-induced allergy, mice transplanted with antigen-pulsed TolDCs were sensitized intraperitoneally with B. tropicalis mite extract (BtE) adsorbed to aluminium hydroxide. After challenge by nasal administration of BtE, bronchoalveolar lavage fluid (BALF), lungs, spleen and serum were collected for analysis. RESULTS: Induction of TolDCs was efficiently achieved as shown by low expression of major histocompatibility complex (MHC) II, programmed death-ligand (PD-L) 2 and pro-inflammatory cytokine production, and up-regulation of interleukin (IL)-10, upon LPS stimulation in vitro. Transplantation of 1 or 2 doses of BtE-pulsed TolDCs reduced the number of inflammatory cells in BALF and lungs as well as mucus deposition. Moreover, compared to saline-injected controls, TolDC-treated mice showed lower serum levels of anti-BtE immunoglobulin E (IgE) antibodies as well as reduced Gata3 and IL-4 gene expression in the lungs and decreased IFN-γ levels in the supernatant of splenocyte cultures Transplantation of TolDCs increased the percentage of the regulatory T cells in the spleen and the lungs. CONCLUSIONS: Preventive treatment with TolDCs protects against dust mite-induced allergy in a mouse model, reinforcing the use of tolerogenic dendritic cells for the management of allergic conditions.

8.
Front Microbiol ; 9: 3056, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627118

RESUMO

The extracellular vesicles (EVs) released by Leishmania can contribute to the establishment of infection and host immunomodulation. In this study, we characterized the shedding of EVs from Leishmania (Leishmania) amazonensis promastigotes. This species is the causative agent of cutaneous leishmaniasis, and its role during interactions with bone marrow-derived macrophages (BMDMs) and peritoneal B-1 cells was evaluated. Leishmania amazonensis promastigotes cultivated in vitro at different times and temperatures spontaneously released EVs. EVs were purified using size-exclusion chromatography (SEC) and quantitated by nanoparticle tracking analysis (NTA). NTA revealed that the average size of the EVs was approximately 180 nm, with concentrations ranging from 1.8 × 108 to 2.4 × 109 vesicles/mL. In addition, the presence of LPG and GP63 were detected in EVs obtained at different temperatures. Naïve BMDMs stimulated with EVs exhibited increased IL-10 and IL-6 expression. However, incubating B-1 cells with parasite EVs did not stimulate IL-10 expression but led to an increase in the expression of IL-6 and TNFα. After 7 weeks post-infection, animals infected with L. amazonensis promastigotes in the presence of parasite EVs had significant higher parasite load and a polarization to Th2 response, as compared to the group infected with the parasite alone. This work demonstrated that EVs isolated from L. amazonensis promastigotes were able to stimulate macrophages and B-1 cells to express different types of cytokines. Moreover, the immunomodulatory properties of EVs probably contributed to an increase in parasite burden in mice. These findings suggest that the functionality of L. amazonensis EVs on immune system favor of parasite survival and disease progression.

9.
Front Microbiol, v. 9, 2286, 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2571

RESUMO

Sporotrichosis is a mycosis that affects the skin, lymphatic system and other organs in humans and animals. The disease has a worldwide distribution, with endemic areas in Brazil, and is caused by a complex of species, including Sporothrix brasiliensis. Some fungi release extracellular vesicles (EVs) that can interact with the host cell and modulate the host immune response. The aim of this study was to analyze the participation of S. brasiliensis EVs in the modulation of dendritic cells (DCs) and in the control of infection in vivo. Our results showed that in vitro, the EVs isolated from S. brasiliensis induced an increase in the phagocytic index and fungal burden in DCs. In addition, we observed a significant increase in IL-12p40 and TNF-alpha cytokine production. Then, the EVs were inoculated into BALB/c mice before subcutaneous infection with yeast, and the lesion was analyzed after 21, 35, and 42 days. An increase in fungal burden and lesion diameter were observed after 21 days in mice inoculated with a high concentration of EVs. However, after 35 days, we observed a regression of the lesion, which persisted until 42 days after infection. Interestingly, we observed an increase in fungal burden in these mice. In addition, we observed the presence of immunogenic components and proteins that could be related with virulence in EVs. These results suggest that EVs can play an important role in virulence and modulation of the host immune system during experimental S. brasiliensis infection.

10.
Front. Microbiol. ; 9: 2286, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15602

RESUMO

Sporotrichosis is a mycosis that affects the skin, lymphatic system and other organs in humans and animals. The disease has a worldwide distribution, with endemic areas in Brazil, and is caused by a complex of species, including Sporothrix brasiliensis. Some fungi release extracellular vesicles (EVs) that can interact with the host cell and modulate the host immune response. The aim of this study was to analyze the participation of S. brasiliensis EVs in the modulation of dendritic cells (DCs) and in the control of infection in vivo. Our results showed that in vitro, the EVs isolated from S. brasiliensis induced an increase in the phagocytic index and fungal burden in DCs. In addition, we observed a significant increase in IL-12p40 and TNF-alpha cytokine production. Then, the EVs were inoculated into BALB/c mice before subcutaneous infection with yeast, and the lesion was analyzed after 21, 35, and 42 days. An increase in fungal burden and lesion diameter were observed after 21 days in mice inoculated with a high concentration of EVs. However, after 35 days, we observed a regression of the lesion, which persisted until 42 days after infection. Interestingly, we observed an increase in fungal burden in these mice. In addition, we observed the presence of immunogenic components and proteins that could be related with virulence in EVs. These results suggest that EVs can play an important role in virulence and modulation of the host immune system during experimental S. brasiliensis infection.

11.
PLoS Negl Trop Dis ; 8(9): e3161, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25232947

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are structures with phospholipid bilayer membranes and 100-1000 nm diameters. These vesicles are released from cells upon activation of surface receptors and/or apoptosis. The production of EVs by dendritic cells, mast cells, macrophages, and B and T lymphocytes has been extensively reported in the literature. EVs may express MHC class II and other membrane surface molecules and carry antigens. The aim of this study was to investigate the role of EVs from Leishmania-infected macrophages as immune modulatory particles. METHODOLOGY/PRINCIPAL FINDINGS: In this work it was shown that BALB/c mouse bone marrow-derived macrophages, either infected in vitro with Leishmania amazonensis or left uninfected, release comparable amounts of 50-300 nm-diameter extracellular vesicles (EVs). The EVs were characterized by flow cytometry and electron microscopy. The incubation of naïve macrophages with these EVs for 48 hours led to a statistically significant increase in the production of the cytokines IL-12, IL-1ß, and TNF-α. CONCLUSIONS/SIGNIFICANCE: EVs derived from macrophages infected with L. amazonensis induce other macrophages, which in vivo could be bystander cells, to produce the proinflammatory cytokines IL-12, IL-1ß and TNF-α. This could contribute both to modulate the immune system in favor of a Th1 immune response and to the elimination of the Leishmania, leading, therefore, to the control the infection.


Assuntos
Vesículas Extracelulares/imunologia , Leishmania/imunologia , Leishmania/parasitologia , Leishmaniose/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos BALB C
12.
BMC Res Notes ; 7: 70, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24484604

RESUMO

BACKGROUND: It has been reported that repeated intravenous injections of a relatively large amount of Leishmania amazonensis amastigote extract (LaE) in BALB/c mice exacerbates the infection of these mice by Leishmania braziliensis. The identification of the extract active principle(s) through physicochemical purification often involves dilution and losses of protein in the course of successive purification procedures. The large amount of the extract required to induce the phenomenon, therefore, hinders the carrying out of experiments aimed at identifying the active molecule(s) through extract purification. In the present work, a dose-response experiment was done to find out if smaller amounts of LaE than that necessary to be used by the intravenous route would reproduce the phenomenon when injected by the intradermal route. In addition, it was also investigated whether a Leishmania braziliensis amastigote extract (LbE) would exert the same effect and whether the effect would occur in C57BL/6 mice. RESULTS: It was found that a single injection of either LaE or LbE containing 5 µg of protein was capable of enhancing the infection in BALB/c but not in C57BL/6 mice. In addition, it was observed that the largest tested doses of LbE (containing 30 and 180 µg of protein) failed to enhance the infection by L. braziliensis, whereas all doses of LaE enhanced equally that infection. CONCLUSIONS: Those results indicate the possible existence in LbE, and not in LaE, of molecules that interfere with the extract infection-enhancing activity when it is injected in large amounts, and that the inoculation of Leishmania extracts through the intravenous and intradermal routes potentiate the infection by L. braziliensis through the same mechanism.


Assuntos
Leishmania/patogenicidade , Leishmaniose Cutânea/parasitologia , Proteínas de Protozoários/farmacologia , Extratos de Tecidos/farmacologia , Animais , Suscetibilidade a Doenças , Relação Dose-Resposta a Droga , Injeções Intradérmicas , Injeções Intravenosas , Leishmania/química , Leishmania/genética , Leishmania braziliensis/química , Leishmania braziliensis/crescimento & desenvolvimento , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/administração & dosagem , Especificidade da Espécie , Organismos Livres de Patógenos Específicos , Extratos de Tecidos/administração & dosagem , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...