Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1174, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859534

RESUMO

Placental abnormalities have been sporadically implicated as a source of developmental heart defects. Yet it remains unknown how often the placenta is at the root of congenital heart defects (CHDs), and what the cellular mechanisms are that underpin this connection. Here, we selected three mouse mutant lines, Atp11a, Smg9 and Ssr2, that presented with placental and heart defects in a recent phenotyping screen, resulting in embryonic lethality. To dissect phenotype causality, we generated embryo- and trophoblast-specific conditional knockouts for each of these lines. This was facilitated by the establishment of a new transgenic mouse, Sox2-Flp, that enables the efficient generation of trophoblast-specific conditional knockouts. We demonstrate a strictly trophoblast-driven cause of the CHD and embryonic lethality in one of the three lines (Atp11a) and a significant contribution of the placenta to the embryonic phenotypes in another line (Smg9). Importantly, our data reveal defects in the maternal blood-facing syncytiotrophoblast layer as a shared pathology in placentally induced CHD models. This study highlights the placenta as a significant source of developmental heart disorders, insights that will transform our understanding of the vast number of unexplained congenital heart defects.


Assuntos
Cardiopatias , Trofoblastos , Feminino , Gravidez , Animais , Camundongos , Placenta , Coração , Células Epiteliais , Camundongos Transgênicos
2.
Prion ; 15(1): 1-11, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33397192

RESUMO

Since the discovery of bovine spongiform encephalopathy (BSE), researchers have orally challenged cattle with infected brain material to study various aspects of disease pathogenesis. Unlike most other pathogens, oral BSE challenge does not always result in the expected clinical presentation and pathology. In a recent study, steers were challenged orally with BSE and all developed clinical signs and were sacrificed and tested. However, despite a similar incubation and clinical presentation, one of the steers did not have detectable PrPSc in its brain. Samples from this animal were analysed for genetic differences as well as for the presence of in vitro PrPSc seeding activity or infectivity to determine the BSE status of this animal and the potential reasons that it was different. Seeding activity was detected in the brainstem of the abnormal steer but it was approximately one million times less than that found in the normal BSE positive steers. Intra-cranial challenge of bovinized transgenic mice resulted in no transmission of disease. The abnormal steer had different genetic sequences in non-coding regions of the PRNP gene but detection of similar genotypes in Canadian BSE field cases, that showed the expected brain pathology, suggested these differences may not be the primary cause of the abnormal result. Breed composition analysis showed a higher Hereford content in the abnormal steer as well as in two Canadian atypical BSE field cases and several additional abnormal experimental animals. This study could point towards a possible impact of breed composition on BSE pathogenesis.


Assuntos
Encefalopatia Espongiforme Bovina , Doenças Priônicas , Animais , Canadá , Bovinos , Encefalopatia Espongiforme Bovina/genética , Genótipo , Camundongos , Camundongos Transgênicos
3.
PLoS One ; 15(9): e0237700, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32966295

RESUMO

The reduction of food intake during pregnancy is part of many cultural and religious traditions around the world. The impact of such practices on fetal growth and development are poorly understood. Here, we examined the patterns of diet intake among Maasai pregnant women and assessed their effect on newborn morphometrics. We recruited 141 mother-infant pairs from Ngorongoro Conservation Area (NCA) in Northern Tanzania and quantified dietary intake and changes in maternal diet during pregnancy. We obtained measurements of body weight (BW) and head circumference (HC) at birth. We found that Maasai women significantly reduced their dietary intake during the third trimester, going from an average of 1601 kcal/day during the first two trimesters to 799 kcal/day in the final trimester. The greatest proportion of nutrient reduction was in carbohydrates. Overall, 40% of HC Z-scores of the NCA sample were more than 2 standard deviations below the WHO standard. Nearly a third of neonates classify as low birth weight (< 2500g). HC was smaller relative to BW in this cohort than predicted using the WHO standard. This contrasts markedly to a Tanzanian birth cohort obtained at the same time in an urban context in which only 12% of infants exhibited low weight, only two individuals had HC Z-scores < 2 and HC's relative to birth weight were larger than predicted using the WHO standards. The surprising lack of head sparing in the NCA cohort suggests that the impact of third trimester malnutrition bears further investigation in both animal models and human populations, especially as low HC is negatively associated with long term health outcomes.


Assuntos
Restrição Calórica , Desenvolvimento Fetal , Restrição Calórica/efeitos adversos , Feminino , Cabeça/embriologia , Cabeça/crescimento & desenvolvimento , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Masculino , Mães , Gravidez , Primeiro Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Tanzânia
4.
PLoS One ; 15(1): e0226735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31917811

RESUMO

The major milestones in mouse placental development are well described, but our understanding is limited to how the placenta can adapt to damage or changes in the environment. By using stereology and expression of cell cycle markers, we found that the placenta grows under normal conditions not just by hyperplasia of trophoblast cells but also through extensive polyploidy and cell hypertrophy. In response to feeding a low protein diet to mothers prior to and during pregnancy, to mimic chronic malnutrition, we found that this normal program was altered and that it was influenced by the sex of the conceptus. Male fetuses showed intrauterine growth restriction (IUGR) by embryonic day (E) 18.5, just before term, whereas female fetuses showed IUGR as early as E16.5. This difference was correlated with differences in the size of the labyrinth layer of the placenta, the site of nutrient and gas exchange. Functional changes were implied based on up-regulation of nutrient transporter genes. The junctional zone was also affected, with a reduction in both glycogen trophoblast and spongiotrophoblast cells. These changes were associated with increased expression of Phlda2 and reduced expression of Egfr. Polyploidy, which results from endoreduplication, is a normal feature of trophoblast giant cells (TGC) but also spongiotrophoblast cells. Ploidy was increased in sinusoidal-TGCs and spongiotrophoblast cells, but not parietal-TGCs, in low protein placentas. These results indicate that the placenta undergoes a range of changes in development and function in response to poor maternal diet, many of which we interpret are aimed at mitigating the impacts on fetal and maternal health.


Assuntos
Aclimatação , Dieta com Restrição de Proteínas/efeitos adversos , Embrião de Mamíferos/citologia , Retardo do Crescimento Fetal/etiologia , Privação de Alimentos , Placenta/citologia , Animais , Proliferação de Células , Embrião de Mamíferos/fisiologia , Feminino , Desenvolvimento Fetal , Retardo do Crescimento Fetal/patologia , Células Gigantes , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Camundongos Endogâmicos C57BL , Placenta/fisiologia , Gravidez , Trofoblastos/citologia , Trofoblastos/fisiologia
5.
Reproduction ; 159(2): 115-132, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31751309

RESUMO

Assisted reproduction technologies (ARTs) are becoming increasingly common. Therefore, how these procedures influence gene regulation and foeto-placental development are important to explore. Here, we assess the effects of blastocyst transfer on mouse placental growth and transcriptome. C57Bl/6 blastocysts were transferred into uteri of B6D2F1 pseudopregnant females and dissected at embryonic day 10.5 for analysis. Compared to non-transferred controls, placentas from transferred conceptuses weighed less even though the embryos were larger on average. This suggested a compensatory increase in placental efficiency. RNA sequencing of whole male placentas revealed 543 differentially expressed genes (DEGs) after blastocyst transfer: 188 and 355 genes were downregulated and upregulated, respectively. DEGs were independently validated in male and female placentas. Bioinformatic analyses revealed that DEGs represented expression in all major placental cell types and included genes that are critical for placenta development and/or function. Furthermore, the direction of transcriptional change in response to blastocyst transfer implied an adaptive response to improve placental function to maintain foetal growth. Our analysis revealed that CpG methylation at regulatory regions of two DEGs was unchanged in female transferred placentas and that DEGs had fewer gene-associated CpG islands (within ~20 kb region) compared to the larger genome. These data suggested that altered methylation at proximal promoter regions might not lead to transcriptional disruption in transferred placentas. Genomic clustering of some DEGs warrants further investigation of long-range, cis-acting epigenetic mechanisms including histone modifications together with DNA methylation. We conclude that embryo transfer, a protocol required for ART, significantly impacts the placental transcriptome and growth.

6.
Cell Res ; 28(8): 819-832, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30042384

RESUMO

The placenta is crucial for a successful pregnancy and the health of both the fetus and the pregnant woman. However, how the human trophoblast lineage is regulated, including the categorization of the placental cell subtypes is poorly understood. Here we performed single-cell RNA sequencing (RNA-seq) on sorted placental cells from first- and second-trimester human placentas. New subtypes of cells of the known cytotrophoblast cells (CTBs), extravillous trophoblast cells (EVTs), Hofbauer cells, and mesenchymal stromal cells were identified and cell-type-specific gene signatures were defined. Functionally, this study revealed many previously unknown functions of the human placenta. Notably, 102 polypeptide hormone genes were found to be expressed by various subtypes of placental cells, which suggests a complex and significant role of these hormones in regulating fetal growth and adaptations of maternal physiology to pregnancy. These results document human placental trophoblast differentiation at single-cell resolution and thus advance our understanding of human placentation during the early stage of pregnancy.


Assuntos
Hormônios Peptídicos/genética , Placenta/citologia , Placentação/genética , Trofoblastos/metabolismo , Sequência de Bases , Diferenciação Celular , Feminino , Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Gravidez , Primeiro Trimestre da Gravidez/genética , Primeiro Trimestre da Gravidez/metabolismo , Segundo Trimestre da Gravidez/genética , Segundo Trimestre da Gravidez/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
8.
Cell Rep ; 21(5): 1150-1159, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29091755

RESUMO

Many types of multinucleated cells (syncytia) generated by cell-cell fusion are post-mitotic, but it remains unclear how this state is maintained and why. Here, we utilized the fluorescent ubiquitination-based cell-cycle indicator (Fucci) reporter system to show that human placental trophoblast cells were all in the G0 phase before they fuse. Expression of the fusogenic protein (fusogen) Syncytin-2 was confined to G0 cells. Overexpression of Syncytin-2 in cycling cells overrode the cell-cycle restriction and enabled fusion of cells in the S/G2/M phases but resulted in the unstable syncytia retaining mitotic features. The Syncytin-2-induced syncytia were functionally compromised with respect to pathogen defense and hormone secretion. We found that, during trophoblast fusion, the cell-cycle inhibitor p21 interacted with the GCM1 transcription factor, and this complex bound to the promoter of Syncytin-2 and promoted its transcription. These findings demonstrate that G0-restricted Syncytin-2 expression is a prerequisite for development of functional post-mitotic syncytia.


Assuntos
Células Gigantes/metabolismo , Placenta/metabolismo , Proteínas da Gravidez/metabolismo , Sistemas CRISPR-Cas/genética , Caderinas/metabolismo , Fusão Celular , Linhagem Celular , Colforsina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ligação a DNA , Feminino , Células Gigantes/citologia , Humanos , Microscopia de Fluorescência , Mitose , Proteínas Nucleares/metabolismo , Gravidez , Proteínas da Gravidez/genética , Regiões Promotoras Genéticas , Fase de Repouso do Ciclo Celular , Imagem com Lapso de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Trofoblastos/citologia , Trofoblastos/metabolismo
9.
Sci Rep ; 7(1): 5575, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717241

RESUMO

Trophoblast stem (TS) cells in the mouse derive from the polar trophectoderm of the blastocyst and persist through early gestation (to E8.5) to support placental development. Further development and growth is proposed to rely on layer-restricted progenitor cells. Stem cell antigen (Sca) -1 is a member of the Ly6 gene family and a known marker of stem cells in both hematopoietic and non-hematopoietic mouse tissues. Having identified that Sca-1 mRNA was highly expressed in mouse TS cells in culture, we found that it was also expressed in a subset of trophoblast within the chorion and labyrinth layer of the mouse placenta. Isolation and in vitro culture of Sca-1+ trophoblast cells from both differentiated TS cell cultures and dissected mouse placentae resulted in proliferating colonies that expressed known markers of TS cells. Furthermore, these cells could be stimulated to differentiate and expressed markers of both junctional zone and labyrinth trophoblast subtypes in a manner comparable to established mouse TS cell lines. Our results suggest that we have identified a subpopulation of TS cell-like cells that persist in the mid- to late- gestation mouse placenta as well as a cell surface protein that can be used to identify and isolate these cells.


Assuntos
Ataxina-1/genética , Ataxina-1/metabolismo , Células-Tronco Pluripotentes/citologia , Trofoblastos/citologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Córion/citologia , Córion/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Camundongos , Células-Tronco Pluripotentes/metabolismo , Gravidez , Trofoblastos/metabolismo , Regulação para Cima
10.
Reprod Fertil Dev ; 28(1-2): 75-82, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27062876

RESUMO

For an organ that is so critical for life in eutherian mammals, the placenta hardly gets the attention that it deserves. The placenta does a series of remarkable things, including implanting the embryo in the uterus, negotiating with the mother for nutrients but also protecting her health during pregnancy, helping establish normal metabolic and cardiovascular function for life postnatally (developmental programming) and initiating changes that prepare the mother to care for and suckle her young after birth. Different lines of evidence in experimental animals suggest that the development and function of the placenta are adaptable. This means that some of the changes observed in pathological pregnancies may represent attempts to mitigate the impact of fetal growth and development. Key and emerging concepts are reviewed here concerning how we may view the placenta diagnostically and therapeutically in pregnancy complications, focusing on information from experimental studies in mice, sheep and cattle, as well as association studies from humans. Hundreds of different genes have been shown to underlie normal placental development and function, some of which have promise as tractable targets for intervention in pregnancies at risk for poor fetal growth.


Assuntos
Desenvolvimento Embrionário , Modelos Biológicos , Placenta/fisiologia , Circulação Placentária , Placentação , Animais , Pesquisa Biomédica/tendências , Feminino , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/fisiopatologia , Retardo do Crescimento Fetal/prevenção & controle , Humanos , Recém-Nascido , Doenças do Recém-Nascido/etiologia , Doenças do Recém-Nascido/fisiopatologia , Doenças do Recém-Nascido/prevenção & controle , Masculino , Placenta/irrigação sanguínea , Placenta/metabolismo , Placenta/fisiopatologia , Doenças Placentárias/metabolismo , Doenças Placentárias/fisiopatologia , Doenças Placentárias/terapia , Gravidez
11.
PLoS One ; 11(3): e0152227, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27018791

RESUMO

Mechanisms of resource allocation are essential for maternal and fetal survival, particularly when the availability of nutrients is limited. We investigated the responses of feto-placental development to maternal chronic protein malnutrition to test the hypothesis that maternal low protein diet produces differential growth restriction of placental and fetal tissues, and adaptive changes in the placenta that may mitigate impacts on fetal growth. C57BL/6J female mice were fed either a low-protein diet (6% protein) or control isocaloric diet (20% protein). On embryonic days E10.5, 17.5 and 18.5 tissue samples were prepared for morphometric, histological and quantitative RT-PCR analyses, which included markers of trophoblast cell subtypes. Potential endocrine adaptations were assessed by the expression of Prolactin-related hormone genes. In the low protein group, placenta weight was significantly lower at E10.5, followed by reduction of maternal weight at E17.5, while the fetuses became significantly lighter no earlier than at E18.5. Fetal head at E18.5 in the low protein group, though smaller than controls, was larger than expected for body size. The relative size and shape of the cranial vault and the flexion of the cranial base was affected by E17.5 and more severely by E18.5. The junctional zone, a placenta layer rich in endocrine and energy storing glycogen cells, was smaller in low protein placentas as well as the expression of Pcdh12, a marker of glycogen trophoblast cells. Placental hormone gene Prl3a1 was altered in response to low protein diet: expression was elevated at E17.5 when fetuses were still growing normally, but dropped sharply by E18.5 in parallel with the slowing of fetal growth. This model suggests that nutrients are preferentially allocated to sustain fetal and brain growth and suggests the placenta as a nutrient sensor in early gestation with a role in mitigating impacts of poor maternal nutrition on fetal growth.


Assuntos
Dieta com Restrição de Proteínas , Desenvolvimento Fetal/fisiologia , Placenta/fisiologia , Animais , Peso Corporal , Encéfalo/fisiologia , Caderinas/genética , Caderinas/metabolismo , Desenvolvimento Embrionário , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hormônios Placentários/genética , Hormônios Placentários/metabolismo , Gravidez , Prolactina/genética , Prolactina/metabolismo , Protocaderinas , Reação em Cadeia da Polimerase em Tempo Real , Microtomografia por Raio-X
12.
Am J Obstet Gynecol ; 215(1 Suppl): S1-S46, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26972897

RESUMO

Although much progress is being made in understanding the molecular pathways in the placenta that are involved in the pathophysiology of pregnancy-related disorders, a significant gap exists in the utilization of this information for the development of new drug therapies to improve pregnancy outcome. On March 5-6, 2015, the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health sponsored a 2-day workshop titled Placental Origins of Adverse Pregnancy Outcomes: Potential Molecular Targets to begin to address this gap. Particular emphasis was given to the identification of important molecular pathways that could serve as drug targets and the advantages and disadvantages of targeting these particular pathways. This article is a summary of the proceedings of that workshop. A broad number of topics were covered that ranged from basic placental biology to clinical trials. This included research in the basic biology of placentation, such as trophoblast migration and spiral artery remodeling, and trophoblast sensing and response to infectious and noninfectious agents. Research findings in these areas will be critical for the formulation of the development of future treatments and the development of therapies for the prevention of a number of pregnancy disorders of placental origin that include preeclampsia, fetal growth restriction, and uterine inflammation. Research was also presented that summarized ongoing clinical efforts in the United States and in Europe that has tested novel interventions for preeclampsia and fetal growth restriction, including agents such as oral arginine supplementation, sildenafil, pravastatin, gene therapy with virally delivered vascular endothelial growth factor, and oxygen supplementation therapy. Strategies were also proposed to improve fetal growth by the enhancement of nutrient transport to the fetus by modulation of their placental transporters and the targeting of placental mitochondrial dysfunction and oxidative stress to improve placental health. The roles of microRNAs and placental-derived exosomes, as well as messenger RNAs, were also discussed in the context of their use for diagnostics and as drug targets. The workshop discussed the aspect of safety and pharmacokinetic profiles of potential existing and new therapeutics that will need to be determined, especially in the context of the unique pharmacokinetic properties of pregnancy and the hurdles and pitfalls of the translation of research findings into practice. The workshop also discussed novel methods of drug delivery and targeting during pregnancy with the use of macromolecular carriers, such as nanoparticles and biopolymers, to minimize placental drug transfer and hence fetal drug exposure. In closing, a major theme that developed from the workshop was that the scientific community must change their thinking of the pregnant woman and her fetus as a vulnerable patient population for which drug development should be avoided, but rather be thought of as a deprived population in need of more effective therapeutic interventions.


Assuntos
Terapia de Alvo Molecular , Doenças Placentárias/tratamento farmacológico , Placenta , Animais , Biomarcadores/metabolismo , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Feminino , Marcadores Genéticos , Humanos , Camundongos , Modelos Animais , National Institute of Child Health and Human Development (U.S.) , Placenta/embriologia , Placenta/imunologia , Placenta/metabolismo , Placenta/fisiopatologia , Doenças Placentárias/genética , Doenças Placentárias/metabolismo , Doenças Placentárias/fisiopatologia , Gravidez , Resultado da Gravidez , Ratos , Pesquisa Translacional Biomédica , Estados Unidos
13.
Curr Biol ; 26(4): R177-9, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26906492

RESUMO

Evolutionary gene duplication, developmental endoreduplication and selective gene amplification are alternative strategies for increasing gene copy number. When these processes occur together, things get really interesting, and new work shows that is the lifestyle of cells in the placenta.


Assuntos
Amplificação de Genes , Trofoblastos , Diferenciação Celular , Células Gigantes , Placenta
14.
Biol Reprod ; 93(3): 75, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26269505

RESUMO

Pregnancy is often viewed as a conflict between the fetus and mother over metabolic resources. Insulin resistance occurs in mothers during pregnancy but does not normally lead to diabetes because of an increase in the number of the mother's pancreatic beta cells. In mice, this increase is dependent on prolactin (Prl) receptor signaling but the source of the ligand has been unclear. Pituitary-derived Prl is produced during the first half of pregnancy in mice but the placenta produces Prl-like hormones from implantation to term. Twenty-two separate mouse genes encode the placenta Prl-related hormones, making it challenging to assess their roles in knockout models. However, because at least four of them are thought to signal through the Prl receptor, we analyzed Prlr mutant mice and compared their phenotypes with those of Prl mutants. We found that whereas Prlr mutants develop hyperglycemia during gestation, Prl mutants do not. Serum metabolome analysis showed that Prlr mutants showed other changes consistent with diabetes. Despite the metabolic changes, fetal growth was normal in Prlr mutants. Of the four placenta-specific, Prl-related hormones that have been shown to interact with the Prlr, their gene expression localizes to different endocrine cell types. The Prl3d1 gene is expressed by trophoblast giant cells both in the labyrinth layer, sitting on the arterial side where maternal blood is highest in oxygen and nutrients, and in the junctional zone as maternal blood leaves the placenta. Expression increases during the night, though the increase in the labyrinth is circadian whereas it occurs only after feeding in the junctional zone. These data suggest that the placenta has a sophisticated endocrine system that regulates maternal glucose metabolism during pregnancy.


Assuntos
Comportamento Alimentar , Glucose/metabolismo , Hiperglicemia/genética , Placenta/metabolismo , Prolactina/genética , Receptores da Prolactina/genética , Animais , Glicemia/metabolismo , Pressão Sanguínea , Ritmo Circadiano , Feminino , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Lactogênio Placentário , Gravidez , Trofoblastos/metabolismo
15.
Circ Arrhythm Electrophysiol ; 8(2): 420-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25648353

RESUMO

BACKGROUND: N629D KCNH2 is a human missense long-QT2 mutation. Previously, we reported that the N629D/N629D mutation embryos disrupted cardiac looping, right ventricle development, and ablated IKr activity at E9.5. The present study evaluates the role of KCNH2 in vasculogenesis. METHODS AND RESULTS: N629D/N629D yolk sac vessels and aorta consist of sinusoids without normal arborization. Isolated E9.5 +/+ first branchial arches showed normal outgrowth of mouse ERG-positive/α-smooth muscle actin coimmunolocalized cells; however, outgrowth was grossly reduced in N629D/N629D. N629D/N629D aortas showed fewer α-smooth muscle actin positive cells that were not coimmunolocalized with mouse ERG cells. Transforming growth factor-ß treatment of isolated N629D/N629D embryoid bodies partially rescued this phenotype. Cultured N629D/N629D embryos recapitulate the same cardiovascular phenotypes as seen in vivo. Transforming growth factor-ß treatment significantly rescued these embryonic phenotypes. Both in vivo and in vitro, dofetilide treatment, over a narrow window of time, entirely recapitulated the N629D/N629D fetal phenotypes. Exogenous transforming growth factor-ß treatment also rescued the dofetilide-induced phenotype toward normal. CONCLUSIONS: Loss of function of KCNH2 mutations results in defects in cardiogenesis and vasculogenesis. Because many medications inadvertently block the KCNH2 potassium current, these novel findings seem to have clinical relevance.


Assuntos
Anormalidades Induzidas por Medicamentos/prevenção & controle , Células-Tronco Embrionárias/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/genética , Morte Fetal , Cardiopatias Congênitas/prevenção & controle , Mutação de Sentido Incorreto , Neovascularização Fisiológica/efeitos dos fármacos , Fenetilaminas/toxicidade , Bloqueadores dos Canais de Potássio/toxicidade , Sulfonamidas/toxicidade , Fator de Crescimento Transformador beta/farmacologia , Malformações Vasculares/prevenção & controle , Anormalidades Induzidas por Medicamentos/embriologia , Anormalidades Induzidas por Medicamentos/genética , Anormalidades Induzidas por Medicamentos/metabolismo , Animais , Células Cultivadas , Canal de Potássio ERG1 , Técnicas de Cultura Embrionária , Células-Tronco Embrionárias/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Cardiopatias Congênitas/induzido quimicamente , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Humanos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Morfogênese/efeitos dos fármacos , Fenótipo , Transdução de Sinais , Malformações Vasculares/induzido quimicamente , Malformações Vasculares/embriologia , Malformações Vasculares/genética , Malformações Vasculares/metabolismo
16.
Dev Biol ; 398(1): 110-9, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25499676

RESUMO

The maternal blood space in the mouse placenta is lined not by endothelial cells but rather by various subtypes of trophoblast giant cells (TGCs), defined by their location and different patterns of gene expression. While TGCs invade the spiral arteries to displace the maternal endothelium, the rest of the vascular space is created de novo but the mechanisms are not well understood. We cultured mouse trophoblast stem (TS) cells in suspension and found that they readily form spheroids (trophospheres). Compared to cells grown in monolayer, differentiating trophospheres showed accelerated expression of TGC-specific genes. Morphological and gene expression studies showed that cavities form within the trophospheres that are primarily lined by Prl3d1/Pl1α-positive cells analogous to parietal-TGCs (P-TGCs) which line the maternal venous blood within the placenta. Lumen formation in trophospheres and in vivo was associated with cell polarization including CD34 sialomucin deposition on the apical side and cytoskeletal rearrangement. While P-TGCs preferentially formed in trophospheres at atmospheric oxygen levels (19%), decreasing oxygen to 3% shifted differentiation towards Ctsq-positive sinusoidal and/or channel TGCs. These studies show that trophoblast cells have the intrinsic ability to form vascular channels in ways analogous to endothelial cells. The trophosphere system will be valuable for assessing mechanisms that regulate specification of different TGC subtypes and their morphogenesis into vascular spaces.


Assuntos
Técnicas de Cultura de Células , Células Gigantes/citologia , Placenta/fisiologia , Células-Tronco/citologia , Trofoblastos/citologia , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Hibridização In Situ , Camundongos , Microscopia de Fluorescência , Oxigênio/metabolismo , Gravidez , Prenhez , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo
17.
J Clin Invest ; 124(11): 4941-52, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25329693

RESUMO

There is strong evidence that overproduction of soluble fms-like tyrosine kinase-1 (sFLT1) in the placenta is a major cause of vascular dysfunction in preeclampsia through sFLT1-dependent antagonism of VEGF. However, the cause of placental sFLT1 upregulation is not known. Here we demonstrated that in women with preeclampsia, sFLT1 is upregulated in placental trophoblasts, while VEGF is upregulated in adjacent maternal decidual cells. In response to VEGF, expression of sFlt1 mRNA, but not full-length Flt1 mRNA, increased in cultured murine trophoblast stem cells. We developed a method for transgene expression specifically in mouse endometrium and found that endometrial-specific VEGF overexpression induced placental sFLT1 production and elevated sFLT1 levels in maternal serum. This led to pregnancy losses, placental vascular defects, and preeclampsia-like symptoms, including hypertension, proteinuria, and glomerular endotheliosis in the mother. Knockdown of placental sFlt1 with a trophoblast-specific transgene caused placental vascular changes that were consistent with excess VEGF activity. Moreover, sFlt1 knockdown in VEGF-overexpressing animals enhanced symptoms produced by VEGF overexpression alone. These findings indicate that sFLT1 plays an essential role in maintaining vascular integrity in the placenta by sequestering excess maternal VEGF and suggest that a local increase in VEGF can trigger placental overexpression of sFLT1, potentially contributing to the development of preeclampsia and other pregnancy complications.


Assuntos
Endométrio/enzimologia , Placenta/enzimologia , Pré-Eclâmpsia/enzimologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Estudos de Casos e Controles , Indução Enzimática , Feminino , Expressão Gênica , Masculino , Camundongos , Gravidez , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
19.
Dev Biol ; 387(2): 131-41, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24485853

RESUMO

The maternal vasculature within the placenta in primates and rodents is unique because it is lined by fetal cells of the trophoblast lineage and not by maternal endothelial cells. In addition to trophoblast cells that invade the uterine spiral arteries that bring blood into the placenta, other trophoblast subtypes sit at different levels of the vascular space. In mice, at least five distinct subtypes of trophoblast cells have been identified which engage maternal endothelial cells on the arterial and venous frontiers of the placenta, but which also form the channel-like spaces within it through a process analogous to formation of blood vessels (vasculogenic mimicry). These cells are all large, post-mitotic trophoblast giant cells. In addition to assuming endothelial cell-like characteristics (endothelial mimicry), they produce dozens of different hormones that are thought to regulate local and systemic maternal adaptations to pregnancy. Recent work has identified distinct molecular pathways in mice that regulate the morphogenesis of trophoblast cells on the arterial and venous sides of the vascular circuit that may be analogous to specification of arterial and venous endothelial cells.


Assuntos
Endotélio Vascular/citologia , Placenta/irrigação sanguínea , Placentação/fisiologia , Trofoblastos/citologia , Animais , Endotélio Vascular/patologia , Feminino , Humanos , Camundongos , Neoplasias/patologia , Gravidez , Trofoblastos/patologia
20.
Cell ; 155(1): 81-93, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24074862

RESUMO

The importance of maternal folate consumption for normal development is well established, yet the molecular mechanism linking folate metabolism to development remains poorly understood. The enzyme methionine synthase reductase (Mtrr) is necessary for utilization of methyl groups from the folate cycle. We found that a hypomorphic mutation of the mouse Mtrr gene results in intrauterine growth restriction, developmental delay, and congenital malformations, including neural tube, heart, and placental defects. Importantly, these defects were dependent upon the Mtrr genotypes of the maternal grandparents. Furthermore, we observed widespread epigenetic instability associated with altered gene expression in the placentas of wild-type grandprogeny of Mtrr-deficient maternal grandparents. Embryo transfer experiments revealed that Mtrr deficiency in mice lead to two distinct, separable phenotypes: adverse effects on their wild-type daughters' uterine environment, leading to growth defects in wild-type grandprogeny, and the appearance of congenital malformations independent of maternal environment that persist for five generations, likely through transgenerational epigenetic inheritance.


Assuntos
Anormalidades Congênitas/genética , Embrião de Mamíferos/metabolismo , Epigênese Genética , Ferredoxina-NADP Redutase/genética , Retardo do Crescimento Fetal/genética , Ácido Fólico/metabolismo , Animais , Cruzamentos Genéticos , Metilação de DNA , Feminino , Ferredoxina-NADP Redutase/metabolismo , Masculino , Camundongos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...