Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 81(1): 255-65, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11423411

RESUMO

Solid-state deuterium ((2)H) NMR spectroscopy was used to study the reorientation of magnetically ordered bicelles in the presence of the paramagnetic lanthanide Eu(3+). Bicelles were composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) plus 1,2-dihexanoyl-sn-glycero-3-phosphocholine plus either the anionic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol, or the cationic lipid 1,2-dimyristoyl-3-trimethyl ammonium propane. Alignment of the bicelles in the magnetic field produced (2)H NMR spectra consisting of a pair of quadrupole doublets, one from the alpha-deuterons and one from the beta-deuterons of DMPC-alpha,beta-d(4). Eu(3+) addition induced the appearance of a second set of quadrupole doublets, having approximately twice the quadrupolar splittings of the originals, and growing progressively in intensity with increasing Eu(3+), at the expense of the intensity of the originals. The new resonances were attributed to bicelles having a parallel alignment with respect to the magnetic field, as opposed to the perpendicular alignment preferred in the absence of Eu(3+). Therefore, the equilibrium degree and kinetics of reorientation could be evaluated from the (2)H NMR spectra. For more cationic initial surface charges, higher amounts of added Eu(3+) were required to induce a given degree of reorientation. However, the equilibrium degree of bicellar reorientation was found to depend solely on the amount of bound Eu(3+), regardless of the bicelle composition. The kinetics of reorientation were a function of lipid concentration. At high lipid concentration, a single fast rate of reorientation (minutes) described the approach to the equilibrium degree of orientation. At lower lipid concentrations, two rates processes were discernible: one fast (minutes) and one slow (hours). The data indicate, therefore, that bicelle reorientation is a phase transition made critical by bicelle-bicelle interactions.


Assuntos
Deutério/metabolismo , Európio/química , Európio/metabolismo , Espectroscopia de Ressonância Magnética , Magnetismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Fluorescência , Isótopos/química , Isótopos/metabolismo , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Micelas
2.
Solid State Nucl Magn Reson ; 16(1-2): 21-36, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10811426

RESUMO

2H NMR studies of polyelectrolyte-induced domain formation in lipid bilayer membranes are reviewed. The 2H NMR spectrum of choline-deuterated phosphatidylcholine (PC) reports on any and all sources of lipid bilayer surface charge, since these produce a conformation change in the choline head group of PC, manifest as a change in the 2H NMR quadrupolar splitting. In addition, homogeneous and inhomogeneous surface charge distributions are differentiated. Adding polyelectrolytes to lipid bilayers consisting of mixtures of oppositely charged and zwitterionic lipids produces 2H NMR spectra which are superpositions of two Pake sub-spectra: one corresponding to a polyelectrolyte-bound lipid population and the other to a polyelectrolyte-free lipid population. Quantitative analysis of the quadrupolar splittings and spectral intensities of the two sub-spectra indicate that the polyelectrolyte-bound populations is enriched with oppositely charged lipid, while the polyelectrolyte-free lipid population is correspondingly depleted. The same domain-segregation effect is produced whether cationic polyelectrolytes are added to anionic lipid bilayers or anionic polyelectrolytes are added to cationic lipid bilayers. The 2H NMR spectra permit a complete characterization of domain composition and size. The anion:cation ratio within the domains is always stoichiometric, as expected for a process driven by Coulombic interactions. The zwitterionic lipid content of the domains is always statistical, reflecting the systems tendency to minimize the entropic cost of demixing charged lipids into domains. Domain formation is observed even with rather short polyelectrolytes, suggesting that individual polyelectrolyte chains aggregate at the surface to form "superdomains". Overall, the polyelectrolyte bound at the lipid bilayer surface appears to lie flat along the surface and to be essentially immobilized through its multiple electrostatic contacts.


Assuntos
Bicamadas Lipídicas , Espectroscopia de Ressonância Magnética , Antígenos Transformantes de Poliomavirus , Resinas de Troca de Cátion , Cetrimônio , Compostos de Cetrimônio , Detergentes , Deutério , Eletrólitos , Ácidos Graxos Monoinsaturados , Corantes Fluorescentes , Peso Molecular , Fosfatidilcolinas , Fosfatidilgliceróis , Poliestirenos , Compostos de Amônio Quaternário
3.
Biochim Biophys Acta ; 1416(1-2): 21-30, 1999 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-9889304

RESUMO

Solid-state phosphorus (31P) and deuterium (2H) nuclear magnetic resonance (NMR) spectroscopy over the temperature range of 25-50 degreesC were used to investigate bilayered micelles (bicelles) composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1, 2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) in the presence of either the anionic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol (DMPG) or the cationic lipid 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP). The 31P-NMR spectra demonstrate that bicellar structures form with DMPG/DMPC ratios ranging from 0 to 50/50 and with DMTAP/DMPC ratios from 0 to 40/60, while the overall concentration of DHPC remains constant. The formation of bicelles containing charged amphiphiles is contingent upon the presence of NaCl, with 50 mM NaCl being sufficient for bicelle formation at all concentrations of charged amphiphile investigated, while 150 mM NaCl affords better resolution of the various 31P-NMR resonance signals. The 2H-NMR spectra demonstrate that the quadrupolar splittings (Deltanu) of head group-deuterated DMPC change inversely as a function of the amount of negative versus positive charge present, and that the changes for deuterons on the alpha-carbon are opposite in sense to those for deuterons on the beta-carbon. This indicates that head group-deuterated phosphatidylcholine functions as a molecular voltmeter in bicelles in much the same fashion as it does in spherical vesicles.


Assuntos
Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fosforilcolina/química , Deutério , Dimiristoilfosfatidilcolina , Espectroscopia de Ressonância Magnética , Miristatos/química , Fosfatidilgliceróis/química , Éteres Fosfolipídicos , Isótopos de Fósforo , Compostos de Amônio Quaternário/química , Eletricidade Estática , Temperatura
4.
Biochem Cell Biol ; 76(2-3): 452-64, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9923714

RESUMO

Domain formation in lipid bilayer membranes can occur through electrostatic interactions between charged lipids and oppositely charged polyelectrolytes, such as proteins or polynucleic acids. This review describes a novel method for examining such domains in lipid bilayers, based on 2H NMR spectroscopy. The 2H NMR spectrum of choline-deuterated phosphatidylcholine is sensitive to, and reports on, lipid bilayer surface charge. When a charged lipid bilayer is exposed to an oppositely charged polyelectrolyte, the latter binds electrostatically to the bilayer surface and attracts charged lipids into its vicinity. The resulting inhomogeneous charge distribution produces overlapping 2H NMR subspectra arising from phosphatidylcholine within charge-enriched versus charge-depleted regions. Such spectral details as the quadrupolar splittings and the relative intensities of the subspectra permit a complete analysis of the domain composition, size, and, within limits, lifetime. Using 2H NMR, domain formation in lipid bilayer membranes can be observed with both cationic and anionic polyelectrolytes, whether of natural or synthetic origin. Domain size and composition prove to be sensitive to the detailed chemical structure of both the polyelectrolyte and the charged lipids. Within the domains there is always a stoichiometric anion/cation binding ratio, indicating that the polyelectrolyte lies flat on the membrane surface. The amount of phosphatidylcholine within the domain varies as a function of its statistical availability, in accordance with the predictions of a recent thermodynamic model of domain formation. When the molecular weight of the polyelectrolyte is varied, the domain size alters in accordance with the predictions of classical polymer physics. As expected for a predominantly electrostatic phenomenon, the observed domains dissipate at high ionic strength.


Assuntos
Deutério/química , Eletrólitos/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Fenômenos Químicos , Físico-Química , Eletrólitos/farmacologia , Substâncias Macromoleculares , Peso Molecular , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...